CUBRID 2008 R4.0 Beta QA
Completion Report

This document is a verification report of CUBRID 2008 R4.0 Beta in terms of functionality, performance, stability.

.Table of Contents

1. Test Overview

1.1 Test Objectives

1.2 Test Environment

1.2.1 TEST PROCEDURES

1.2.2 HARDWARE TEST ENVIRONMENT

1.3 Test Category

2. Test Results

2.1 Functionality Test Results

2.1.1 BASIC QUERY TEST

2.1.2 BASIC UTILITY AND OTHER SCENARIO TESTS

2.1.3 HA FEATURE TEST

2.2 Performance Test Results

10

2.2.1 CUBRID BAsIC PERFORMANCE TEST

10

2.2.2 CUBRID INDEX VOLUME PERFORMANCE TEST

2.2.3 NBD BENCHMARK PERFORMANCE TEST

12

17

2.3 Stability Test Results

18

2.4 Other Test Results

20

2.5 Quality Index

21

3. Conclusions

Appendix

I. Functionality Test Scenarios

22

24

25

II. Performance Test Scenario

28

III. Stability Test Scenario

35

IV. Scenario-based Code Coverage Results

37

1.Test Overview

1.1

1.2

1.2.1

Test Objectives

The objectives of this test are to perform functionality, performance and stability tests for the final release candidate
build of CUBRID 2008 R4.0 Beta (hereinafter referred to as R4.0 Beta), which is under development for release in
April 2011 and to determine its release based on the test results. To test the stability of CUBRID, a test environment
was configured as described below. Based on a comparison between the performance test result of CUBRID 2008
R4.0 Beta and that of CUBRID 2008 R3.1 (hereinafter referred to as R3.1), we tested to determine whether the
performance of R4.0 Beta was regressed or improved.

¢ CentOS 4.6 (32/64-bit) or compatible

¢ Windows 2003 (32/64-bit) or compatible

e Final test build: 8.4.0.0195 (Linux 64bit/32bit, Windows 64bit/32bit)

Test Environment

Test Procedures

Tests to verify the CUBRID product are shown below. The test sequence used may differ from the one described
here. To verify product stability and functionality, performance, functionality, stability and other tests were
performed for 4 types of builds as shown in the figure below. The details of each test are described in the appendix
of this report.

® CUBRID test procedures

Weekly Based Test
Daily Based Test
e ™ Memory
Basic SQL Leak Test
\ S " J
p
f . = B L DOTS Stress Test @
Complex SQL [Sign
\ < OFF
' N
Object-Oriented =
L SQUImedium-qa)
< Ad-hoc Test
' N
e N
Utility(Shell)
CUBRID L Nl | Miscellaneous
Install (B > :
NBD Benchmark
L J TPC-W
s N S J
HA 7| & Al [4 3
§ J BTS lssues
\ J

® System diagram for basic test

® System diagram for HA test

1.2.2 Hardware Test Environment

Servers for the CUBRID test and their usage are listed in the table below.

Name oS CPU MEMORY DISK
Host 1 . Cent OS 4.6 (64-bit) . Xeon 2.10 GHz (dual-core) * 1 . 4 GB . SATA 500G * 2 (No Raid)
Host 2 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)
Host 3 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)
Host 4 Windows 2003 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)
Host 5 Windows 2003 (32-bit) Xeon 2.10 GHz (quadcore) * 1 4 GB SATA 500G * 2 (No Raid)
Host 6 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)
Host 7 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)
Host 8 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 1 8 GB SATA 500G * 2 (No Raid)
Host 9 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 1 8 GB SATA 500G * 2 (No Raid)

1.3 Test Category

The following tests were performed to determine whether CUBRID can be released. The details of each test are
described in the appendix of this report.

® Functionality test
¢+ SQL query test
+ MEDIUM query test
+ SITE query test
+ Utility (Shell) test
+ Basic HA feature test
¢ CCI/PHP/IDBC Interface test
® Performance test
+ NBD Benchmark
+ Performance test for basic DBMS functions
+ Performance test for index volume size
® Stability test
+ DOTS stress test
® HA Enhancement
¢+ TPC-W test
+ SQL/MEDIUM with valgrind test
¢+ Dots on HA test

. Porting replication scenario test

® Other tests
+ Test for checking CUBRID 2008 R4.0 Beta functionalities/bug fixes
¢ Memory check by Valgrind

2. Test Results

2.1

2.11

213

Functionality Test Results

Basic Query Test

This test was performed to verify the basic DBMS functionalities by using SQL statements. SQL statements stored in
8943 files were tested to verify DBMS conformity. We executed the stored SQL statements in a JDBC-based
application and compared the results to the stored reference file for verification.

Test Category Total Number of Number of Successful Tests Success Rate
Scenarios

SQL query test 8582 8582 100%

MEDIUM query test 970 970 100%

SITE query test 1213 1213 100%

Basic Utility and Other Scenario Tests

This test was performed to verify the basic DBMS functionalities by using shell scripts. In particular, this test was also
performed to verify CUBRID utilities that could not be tested by using SQL statements. We ran scenarios written by
472 shell scripts to verify DBMS conformity.

Test Category Total Number of Number of Successful Tests Success Rate
Scenarios

Utility 207 207 100%

Bug regression 175 175 100%

Environment variable 7 7 100%

Other 83 83 100%

HA Feature Test

Test Category Total Number of Number of Successful Success Rate
Scenarios Tests

Data replication test 5 5 100%

Node fault test 16 16 100%
Process fault test 8 8 100%
Broker fault test 8 8 100%

Run replication test sce 115 115 100%
narios

2.2

2.21

Performance Test Results

CUBRID Basic Performance Test

This test was performed to check the performance of the CUBRID DBMS basic operations, which are select, insert,
update and delete. For more information about test scenarios, see the appendix. For all environment variables,
except for SQL_LOG=OFF in cubrid_broker.conf, default configuration values were used. As shown in the table below,
we have found that the overall basic performance of CUBRID 2008 R4.0 Beta was significant better than that of
CUBRID 2008 R3.1. Especially performance improvement of CUBRID 2008 R4.0 is significant in this test because the
sequence of data in insert/update/delete/select is sequenced. Refer to appendix II for more information.

® Linux: Performance Comparison between CUBRID 2008 R3.1 and CUBRID 2008 R4.0 Beta (64-bit)

100000
80000 M - = = I =
60000 — - minsert
40000 4 W update
20000 mselect
0 Cdelete
R3.1 R4.0Beta R3.1 R4.0 Beta R3.1 R4.0Beta
idi(a) idx{a,b) idhi(a,b,c)
(Unit: TPS)
idx(a) idx(a,b) idx(a,b,c)
R3.1 | pa0 Z‘Zr.?éi R3.1 | p&0 Z‘ZTZZ R3.1 | R&0 :g:c,::
Ratio Ratio Ratio
Insert | 21241 56596 266% 37974 54978 145% 21323 54441 255%
Update | 63531 75228 118% 70995 72467 102% 66133 75038 113%
Select 90941 82114 90% 89059 81777 92% 88248 83753 95%
Delete | 41663 62419 150% 37176 56609 152% 41712 56027 134%
Total 217376 | 276357 | 127% 235204 | 265831 | 113% 217416 | 269259 | 124%

® Linux: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

Similarly to the results for the 64-bit tests, we have found that there was significant change in performance
between 32-bit CUBRID 2008 R3.1 and 32-bit CUBRID 2008 R4.0 Beta except select operation. Select
performance of 32/64-bit R4.0 Beta is lower about 5% than 32/64-bit R4.0 Beta. It is needed to investigate it
more in the future.

100000
BO000 o o (| —
FHEEH — — minsert
40000 - W update
20000 - mselect
0 4 o delete
k3.1 R4.0Beta R3.1 R4.0Beta E3.1 R4.0Beta
idia) idx{a,b) idk(a,b,c)
(Unit: TPS)
idx(a) idx(a,b) idx(a,b,c)
Perfor Perfor Perform
R3.1 g:tg mance | R3.1 g:tg mance | R3.1 I;R:tg ance
Ratio Ratio Ratio
Insert 21376 56818 266% 38592 56146 145% 20873 52891 253%
Update | 62092 73858 119% 66882 70160 105% 67751 71885 106%
Select 87359 79608 91% 84773 78876 93% 86248 82267 95%
Delete 41346 58292 141% 36262 54763 151% 34899 52802 151%
Total 212173 268576 127% 226509 259945 115% 209771 259845 124%
Windows: Performance Comparison between CUBRID 2008 R3.1 (64-bit) and CUBRID 2008 R4.0 Beta (64-bit)
A0000
35000
30000
25000 -)
20000 = — minsart
15000 - W update
10000 -
5000 - mselect
0 - odelete
R3.1 R4.0Beta R3.1 R4.0Beta R3.1 R4.0Beta
idx(a) idx{a,b) idx(a,b,c)
(Unit: TPS)
idx(a) idx(a,b) idx(a,b,c)
Perfor Perfor Perfor
R3.1 L) mance | R3.1 . mance | R3.1 — mance
Beta N Beta N Beta -
Ratio Ratio Ratio
Insert 17385 26580 153% 16334 24519 150% 16566 26002 157%
Update | 17576 29956 170% 17106 29383 172% 16977 31574 186%
Select 20837 33984 163% 20404 30958 152% 21279 32409 152%
Delete 15278 26526 174% 14533 25530 176% 15569 23931 154%
Total 71076 117046 165% 68377 110390 161% 70391 113916 162%

222

® Windows: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)
Similarly to the results for the Windows 64-bit tests, we have found that there was significant change in
performance between 32-bit CUBRID 2008 R3.1 and 32-bit CUBRID 2008 R4.0 Beta.

45000
40000
35000 -
30000 -
25000 - Winsert
20000 -
15000 - W update
10000 -
select
5000 - =
0 O delete
R3.1 R4.0Beta R3.1 R4.0Beta R3.1 R4.0Beta
idifa) i a, b) idxfa,b,c)
(Unit: TPS)
idx(a) idx(a,b) idx(a,b,c)
R4.0 Perfor R4.0 Perfor R4.0 Perfor
R3.1 Beta mance R3.1 Beta mance R3.1 Beta mance
Ratio Ratio Ratio
Insert 19208 36179 188% 19173 35458 185% 18942 36563 193%
Update | 20131 37688 187% 20029 38192 191% 20054 38099 190%
Select 27244 38499 141% 27162 38356 141% 27139 38014 140%
Delete 16287 37062 228% 15972 36027 226% 15641 35830 229%
Total 82870 149428 180% 82336 148033 180% 81776 148506 182%

CUBRID Index Volume Performance Test

This test was performed to check index volume reducement amount in case of various index types and data
generation types. Expecially we have focused on inserted data sequence, random and ordered. For more information
about test scenarios, see the appendix. As shown in the table below, we have found that there was significant
promotion in performance between CUBRID 2008 R4.0 Beta and CUBRID 2008 R3.1.

® Linux: Performance Comparison between CUBRID 2008 R3.1 and CUBRID 2008 R4.0 Beta (64-bit)

On Linux 64-bit, the overall test results has significant change. Not only index size of CUBRID R4.0 Beta has
significant save (about 50%) than that of CUBRID 2008 R3.1, but also run time has corresponding significant
decrease (about 56%).

In addition, as shown in last two table below, we have found that there was significant change between
CUBRID 2008 R4.0 and CUBRID 2008 R3.1. For CUBRID 2008 R4.0, sequence mode has better performance of
index size than random mode. But for CUBRID 2008 R3.1, random mode has better performance of index size
than sequence mode.

Index Size for inserting 5000000 data
1,200,000
1,000,000
800,000
600,000
400,000
200,000 -
o 4 m R4.0 Index Size
S @ ~, & A S el T - m 3.1 Index Size
P @E & & O T O
S o g 0 0 O D oV &
%@\" & .@?3‘\ %‘9 oF g q‘@ 2T %q-'f‘b F F
P& S ST ' F @ @@
o @é} @‘5' & SR g
<& & & F oF F F K

For above table, SEQUENCE(ID) means that data in column ID is inserted by sequence and ascending order.
RANDOM(ID, NAME) means that data in column ID is inserted by random order and data in column NAME is inserted
by sequence and ascending order. For more information about test scenarios, see the appendix.

Run Time for inserting 5000000 data

000
21:36
158:12
1648
14:24
12:00

536

712

2:24 -
000 -

BRA4DRunTime

mR3I.1RunTime
& &

R4.0 Index Size (Sequence- Random)

B0, 000
T, OO0
B0, D00
SO, DO
400, D00
300, D00
200, D00
L0, DD

o

W Sequence
m Random

R3.1 Index Size (Sequence- Random)

1,200,000
1,000,000
BOO0,000
GO0, 000
400,000
200,000
o

o I~

H Sequence
m Ramndom

Linux: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

On Linux 32-bit, the overall test results were the same as the Linux 64-bit results, and no significant difference

was found.

Index Size for inserting 5000000 data
1,200,000
1,000,000

800,000
600,000
400,000
200,000

H R4.0 Index Size
m E3.1 IndexSize

o
&

4:48

Run Time for inserting 5000000 data

&0

3:36
2:24
1:12
000 - m R4 ORunTime

mE3.1RunTime

o o7
< £
ol +‘“ &

Windows: Performance Comparison between CUBRID 2008 R3.1 (64-bit) and CUBRID 2008 R4.0 Beta (64-bit)
On Windows 64-bit, the overall test results were the same as the Linux 64-bit results, and no significant

difference was found.

1,200,000
1,000,000
800,000
600,000

200, D
! m R4.0 Index Size
o - , :

Index Size for inserting 5000000 data

m E3.1 Index Size

3 2 o <
& S0t n
& & o &
5 27 o o
& &N X3 s
o o ey &
oo 5 &
"é‘" aﬁfﬂb

19:12
16:48
14:24
12:00
9:36
712
448
2:24
000

Run Time for inserting 5000000 data

mEAORunTime
mRE3I.1RunTime

Windows: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

On Windows 32-bit, the overall test results were the same as the Linux 64-bit results, and no significant

difference was found.

Index Size for inserting 5000000 data

1,200,000
1,000,000
800,000
600,000
400,000
200,000

m R4.0 Index Size

m RE3.1 Index Size

Run Time for inserting 5000000 data

1c:48

14:24

12:00
536
712
448
2:29 -
000 - m R4.0RunTime

mE3.1RunTime

2.2.3 NBD Benchmark Performance Test

This test was performed to verify CUBRID performance by using the NBD Benchmark tool, which has been developed
to verify the performance of the general bulletin board application framework. The scalability of the test DB was
Level 1. As shown in the results below, there was no significant difference in NBD Benchmark test loads between
R3.1 and R4.0 Beta.

Platform Version BIT Page View
CUBRID 2008 R3.1 (Default parameter configured) 64-bit 892
CUBRID 2008 R3.1 (Default parameter configured) 32-bit 856
CUBRID 2008 R4.0 Beta (Default parameter configured) 64-bit 876
CUBRID 2008 R4.0 Beta (Default parameter configured) 32-bit 871

The following graphs represent the usage rate of each resource while processing the NBD benchmark test on Linux
64-bit.

CPU Usage
0
= =
E5 i
o - i
=
L i)
o [=1e)
[1]
(=
75
70
21100 21:05
E cru 71.1 Hin 57.0 Avg Q0.0 Hax §3.2 Last
Memory Usage
7.0 04
6.0 G
w 5.0 4G
[1]
i}
= 4.0 04
3.0 04
2.0 0
21:00 21:05
O used 1.7GB Hin 2.2068 Avg 2.6GE Max 2.6GB Last
M Free 5.8G0E Hin 5.1G66 Avg 5. 70E Max 5.506 Last
Disks 1D
20 M
15 M
"
-
i 10 M
A
[in]
5 M
Q
21:00 21:05
O sdal Read 0.0 B Min 0.0 B Avg 0.0 B Max 0.0 B Last
W sdal write 0.0 B MHin 890.7 B Awg 41.0kE Max 0.0 B Last
M z4as Read 2.0 B Min S9.1kE Avg B897.0kE Max 2.0 B Last
O sda3 write 0.0 B Hin 4. 2MEB Avg 13.2MEB Max 11.3MB Last

Stability Test Results

DOTS, a sub-project of an open project called "Linux Test Project," is an open test tool for testing the DBMS. For
more information about DOTS, see the appendix. As shown in the test results below, the system operated stably
without any abnormalities during the 24-hour load period. You can ignore the fails because they are unique violations
due to the modification of duplicate data.

® Number of accumulated SQL queries

number of SUCCESS/FAIL query

(y Axis is the total time dots test executed)

number of query

2,900,000
2,700,000

2,500,000

2,300,000

2,100,000

1,300,000

1,700,000

1,500,000

1,300,000]
1,100,000 - success times
200,000 .

700,000 - fail times
500,000

200,000

100,000

1 3 5 7 3 11 13 15 17 18 21 23 25 27 @23 time(Hour)

® CPU usage

CPU USAGE

cpu 3
29
27
25
23
21
13
17
15
13
11

! ! ! ! ! 1
T T T T T

25 27 L] IEme { Hour)

® Memory usage

MEMORY USAGE

memory (M)

3,000

8,600
8,200 1
7,800
7400
F.o00
E.EOD

6,200 -

5,200
5,400
5,000
4,600
4200

1 3 5 7 q 11 13 15 17 1% 21 23 25 zf 24 time{Hour)

-

2.4 Other Test Results

All bug fixes resolved in CUBRID 2008 R4.0 Beta have been confirmed.

2.5

Quality Index

The standard quality index of CUBRID 2008 R4.0 Beta is listed below.

Approved
. Project Quality
Quality Index . Index M T
Name Quality Sl easurement Target
Standard
Implementat
ion
Number of coding conventions observed in 56
Coding Standards a project
i 100% 100%
Compliance Rate Number of coding conventions applied to 56
each team
Number of source code lines for which 868,083 LOC
Code Revie code review is performed.
CVIEW 100% 100%
Execution Rate Total number of source code lines in the 868,083 LOC
changed files
e : Number of tested statements 181,448
cenario
Q " 75% 75.27%
Code Coverage Total number of statements 241,072
Number of faults detected by static 126
analysis (Level 1)
Number of faults detected by static 7
. analysis (Level 2)
Fault Density 4 24
Detected by) Number of faults detected by static 390
Static Analysis /KLOC /KLOC analysis (Level 3)
Number of faults detected by static 0
analysis (Level 4)
Total number of source code lines 766,613 LOC
Number of modules whose complexity is 599
3.3% 2.65% T S0
. Total number of modules in a project 22,645
Cyclomatic Code
Complexity 12% 14.56% Number of modules whose complexity is 3,298
over 10
Total number of modules in a project 22,645

3. Conclusions

As described in Chapters 1 and 2, CUBRID 2008 R4.0 Beta has been tested in terms of its functionality,
performance, stability and other issues before its release.

The tests have been performed in the Linux 32-bit, Linux 64-bit, Windows 32-bit and Windows 64-bit
environments. All tests were successful, and did not show any special issues for either platform type
(32/64-bit) on Linux/Windows.

Based on the results obtained through the basic performance test, we have found that the overall basic
performance of CUBRID 2008 R4.0 Beta was significant better than that of CUBRID 2008 R3.1. But select
operation is lower about 5% than that of CUBRID 2008 R3.1 in only Linux 32/64-bit. It is needed to
investigate it more in the future.

Based on the results obtained through the index volume performance test, we have found that the overall
save of index volume size of CUBRID 2008 R4.0 Beta was better about 50% than that of CUBRID 2008
R3.1. Also, we have found that there was another significant change between CUBRID 2008 R4.0 and
CUBRID 2008 R3.1. For CUBRID 2008 R4.0, sequence mode has better performance of index size than
random mode.

Based on the results obtained through the NBD benchmark test, we have found that there was no
significant change in performance between CUBRID 2008 R3.1 and CUBRID 2008 R4.0 Beta.

Appendix

I. Functionality Test Scenarios

This test was performed to verify the basic DBMS functionalities by using SQL statements. SQL statements stored in files were
tested to verify DBMS conformity. We executed the stored SQL statements in a JDBC-based application, and compared the
results to the stored reference file for verification. The scenario files included in the basic functionality test are stored in the
SQL and MEDIUM directories of the CUBRID QA tool.

® SQL Query Test

Total: 8582

Case Name Path Description
Performs functionality tests of objects supported by
object sql/_01_object CUBRID, and has the largest number of scenarios (3200

scenarios).

user_authorization

sql/_02_user_authorization

Performs functionality tests of user and authorization
management.

object_oriented

sql/_03_object_oriented

Performs tests for the object-oriented concept. CUBRID is
an object-relational database management system
(DBMS).

operator_function

sql/_04_operator_function

Performs functionality tests of basic functions and
operators supported by CUBRID.

Performs tests of the insert, update, delete, and select
statements, which are the most commonly used SQL

manipulation sql/_06_manipulation statements in DML. Basic statements, subqueries and
various join queries are tested.
Performs functionality tests of DCL (Data Control
misc sql/_07_misc Language), including statistics update or other
functionalities.
javasp sql/_08_javasp Performs functionality tests of Java stored procedures.
Performs basic functionality test scenarios of the bigint and
64-bit sql/_09_64bit datetime types, which have been added in CUBRID 2008
R2.0.
Performs a test of the hierarchical query feature, which
Connect_by sql/_10_connect_by has been added in CUBRID 2008 R3.1.
Performs a test of uncovered codes based on the code
Codecoverage sql/_11_codecoverage coverage results, which has been newly added in CUBRID

2008 R4.0 Beta.

Syntax Extension

sql/_12_mysql_compatibility

Performs a test of the syntax extension, which has been
added in CUBRID 2008 R3.1.

BTS issues

sql/_13_issues

Performs a test of known issues, which comes from issu
e management system.

MySQL compatibility

sql/ _14_mysql_compatibility_2

Performs an unit test of the syntax extension 2, which has
been added in CUBRID 2008 R4.0 Beta.

FBO

sql/ _15_fbo

Performs a test of the FBO feature, which has been added
in CUBRID 2008 R3.1.

Index enhancement

sql/ _16_index_enhancement

Performs an unit test of the index enhancement, which
has been added in CUBRID 2008 R4.0 Beta.

SQL Extension

sql/ _17_sql_extension2

Performs a test of the syntax extension

2, which has been added in CUBRID 2008 R4.0 Beta. Inclu
des a test of syntax enhancements, system parameters,
show statements, date/time functions, string functions,

aggregate functions, other functions.

Index enhancement

sql/ _18_index_enhancement_qa

Performs a test of the index enhancemen
t, which has been added in CUBRID 2008 R4.0 Beta. Inclu
des a test of limit optimizing, using index clause enhan
cement, descending index scan, covering index, orderin
g index, optimizing group by clause, Index scan with lik
e predicate, next key locking,etc.

MEDIUM Query Test

Total: 970

Case Name Path Description

01_fixed medium/_01_fixed Performs regression test scenarios for bug fixes that have been
implemented since the initial version.

02_xtests medium /_02_xtests Performs test scenarios for functionalities supported by CUBRID,
but not by other DBMSs.

03_full_mdb medium /_03_full_mdb Performs test scenarios for sequential/index scan queries with an
index.

04_full medium /_04_full Performs test scenarios that include testing queries for limit values
of CUBRID.

05_err_x medium /_05_err_x Performs negative test scenarios for functionalities that are
supported by CUBRID, but not by other DBMSs.

06_fulltests medium /_06_fulltests Performs test scenarios for search queries with OIDs.

07_mc_dep medium /_07_mc_dep Includes a query that gives various conditions to a WHERE clause in
the SELECT query, and tests whether or not a correct result has
been selected.

08_mc_ind medium/_08_mc_ind Includes scenarios that test queries performing schema change.

SITE Query Test

Total: 1215

Case Name Path Description
k_count_qg site/k_count_q Retrieves count (*) results of a query that is included in the kcc_qg query.
k_merge_qg site/k_merge_q Forces to give a hint to the kcc_qg queries allowing merge joins.
Performs tests for OID reference, collection type, and path expression
K site/k that are part of the object-oriented concept supported by CUBRID with
-a -4 different scalabilities. In addition, it performs functionality tests while
increasing the number of join participating tables.
Performs tests for a complex query in which subqueries, outer/inner
n_q site/n_q joins or group-by queries are combined, and checks whether correct
results are retrieved.

Utility (Shell) Test

This test was performed to verify the basic DBMS functionalities by using shell scripts. In particular, this test was also
performed to verify CUBRID utilities that cannot be tested by using SQL statements. We ran scenarios written using shell
scripts to verify DBMS conformity.

Total: 472

Case Name Path Description
. - Includes a script that tests the database management
utility shell/_01_utility commands supported by CUBRID.
Includes scenarios that change the configuration of CUBRID
sqlx_init shell/_02_sqlIx_init DBMS parameters, and checks whether they are working
correctly.
Includes scenarios that verify there is no regression by
itrack shell/_03_itrack checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.
. . Includes scenarios added to improve code coverage and
addition Shell/_05_addition mainly tests the options of CUBRID utilities.
Includes scenarios that verify there is no regression by
BTS issues shell/_06_issues checking the bug fixes in CUBRID, and stores scenarios that

cannot be tested by SQL.

Index enhancement

shell/_07_index_enhancement

Includes scenarios that verify next key lock and change the
configuration of CUBRID DBMS related to index
enhancement, which has been added in CUBRID 2008 R4.0
Beta.

MySQL compatibility

shell/_23_mysql_compatibility

Includes scenarios that verify syntax extension, which has
been added in CUBRID 2008 R3.1.

HA Feature Test

Total: 37

Case Name

Path

Description

Data replication test Includes scenarios that check whether HA replication is properly
execp/UsualCase - -
performed in a normal state with no fault.

Node fault test execp/UsualCase | Includes scenarios that check whether HA replication is properly
performed when a node fault occurs during insert/update/delete
operations.

Process fault test execp/UsualCase | Includes scenarios that check whether HA replication is properly

performed when a process fault occurs that causes the database process
to stop during insert/update/delete operations.

Broker fault test

execp/UsualCase

Includes scenarios that check whether HA replication

is properly

performed when a broker fault occurs during insert/update/delete

operations.

Replication scenario

scripts/sql

Includes scenarios that test whether HA is working properly for each
CUBRID transaction type, and has two sub directories: random_case and

special_case

II. Performance Test Scenario

® CUBRID Basic Performance Test

To evaluate the basic performance of DBMS, the following 5 variables were used. Database Server, Broker, and Load
Generator were run on a single server.

B Number of data (or number of program loops)
< Total number of data: 900,000 items

< Number of program loops: 100,000 loops/program (900,000 items)
+ COMMIT Interval
- After every execution
- After 100 executions
- After 1,000 executions
+ Number of concurrent users
- 5 users
- 10 users
+ Number of index attributes
- create index idx1 on xo00(a)
- create index idx2 on xo0(a,b)
- create index idx3 on xo0(a,b,e)
+ Interface

- JDBC (Dynamic SQL): Prepared statements were used.

B Test data

< Test schema

CREATE TABLE x00 (

int,

int,

int,

int,
char(10),
char(20),
char(30)

@ "0 a0 oW

CREATE INDEX idx1 on xoo(a);
CREATE INDEX idx2 on xoo0(a,b);
CREATE INDEX idx3 on xo0(a,b,e);

<{ Test data

Enter data from 1 to 450,000; total number of data is 900,000.

<~ How to perform a test

*

¢

Insert/update/select/delete data from a specific number.

For concurrent user tests, the start and end numbers are defined to prevent data from overlapping,
in order to ensure that there is no competition between the concurrent clients.

For concurrent user test programs, a JDBC test program is tested with a multi-threaded program,
and a C program is tested with a multi-process program.

If the number of loops is 10,000, a user repeats execution 10,000 times in the case of the 1-user
test, and each user repeats execution 2,000 times in the case of the 5-user test. Similarly, if the
number of loops is 100,000, a user repeats execution 100,000 times in the case of the 1-user test,
and each user repeats execution 20,000 times in the case of the 5-user test.

<> How to measure test results

¢

¢

Measure the number of loops per second.

For concurrent user tests, add the execution times of all users.

® CUBRID Index Volume Performance Test

To evaluate the index volume size and run time performance, below guide should be followed.

W Purpose

¢

Compare the index size of CUBRID R4.0 Beta with CUBRID R3.1, to check whether the former's
index size smaller to later.

Compare the inserting speed of CUBRID R4.0 Beta with CUBRID R3.1, to check whether the
former's inserting speed faster to later.

After a larget amount of data inserting operation at CUBRID R4.0 Beta and R3.1, verify whether the
index data is integrated and data don't lost or damaged

B Test Requirements

L]

Modify CUBRID configuration info
data_buffer_pages=250000
temp_file_memory_size_in_pages=12
sort_buffer_pages=128

media_failure_support=no

+ Create enough space for the index, the scripts are as below
cubrid addvoldb -p index testdb 1000000 -S (execute 6 times)
cubrid addvoldb -p data testdb 1000000 -S (execute 8 times)

cubrid addvoldb -p temp testdb 1000000 -S (execute 2 times)

B Test completion conditions

+ The index size of CUBRID R4.0 Beta will smaller than CUBRID R3.1 at same data size ,the system

resource is normal.

+ After a larget amount of data inserting operation, the index data of CUBRID is integrated and data
don't lost or damaged.

+ The inserting speed of CUBRID R4.0 Beta is faster than CUBRID R3.1.

+ For CUBRID R4.0 Beta, the index used space of order index larger than random index, For CUBRID
R3.1 the index used space of order index smaller than random index.

+ In the frequently execute database operation (e.g. create table, insert, update,delete) ,execute
"checkdb" & "compactdb" command, the result is ok.

B How to insert data for every index type
< Overall

Build a dictionary data table, there are two column to decide the order of other column (ID,Random) ,if insert

data for "sequence type index", I will select data order by ID colum, if insert data for "random type index",

T will

select data order by RANDOM column, the demo dictionary are as below. I only build 10 rows data for test report,
but at real test environment, there are 5,000,000 row data.

D Random name price createdate description charld char3d) chardl charldl charl50
1 1| product-0-1 0{04/082011 wmneee e i B0 S Jsmin wich focn s o chig - I
2 9 product-0-2 0.1{04/08:2011 =
3 3 product-0-3 02040820011 |- fal datahas [opianand diuten vasiom | Damvuses i wiish i [omevmm 1T e o e et - _
4 4| product-0-4 0.3[04/08:2011
j 3| product-0-3 0.4{04082011 £ o i b mi b
f 2| product-0-2 0.3[04/08:2011 - —
7 10|product-0-10 0.6{04/08:2011 et e o 75 5 s e e
8 8 product-0-8 0.7{04/08:2011
9 7| product-0-7 0.8[04/08:2011
10 6| product-0-6 0.9]0408:2011 — [T CUBRD e i ; —
SEQUENCE| RANDOM RANDOM SEQUENCE SEQUENCE SEQUENCE BANDOM BANDOM RANDOM RANDOM FANDOM

How to generate test data for each case.

+ SEQUENCE(ID)

¢

+ SEQUENCE(ID,NAME,PRICE)

L]

ID

-l N R S T e

=]

10

SEQUENCE

SEQUENCE(ID,NAME)

D

name

product-0-1

product-0-9

product-0-3

product-0-4

product-0-5

product-0-2

product-0-10

|~ | [[4 [(ko [=

product-0-8

k=]

product-0-7

10|product-0-6

SEQUENCE

RANDOM

ID name price
1 |product-0-1 0
2|product-0-9 0.1
3 |product-0-3 0.2
4|product-0-4 03
3 |product-0-5 0.4
6|product-0-2 0.5
7|product-0-10 0.6
8|product-0-8 07
9\product-0-7 0.8
10|product-0-6 0.9
SEQUENCE| RANDOM SEQUENCE

SEQUENCE(ID,NAME,PRICE,DESCRIPTION)

¢

L]

name

price

product-0-1

description
U S

product-0-9

product-0-3

product-0-4

0_3 [—

product-0-5

FoRY I

product-0-2

0_5 [

product-0-10

06 U —

(== T IE s N N QRES WS) f S BT

product-0-8

O

product-0-7

0_8 S

10

product-0-6

SEQUENCE

FANDOM

SEQUENCE

FEANDOM

wn

EQUENCE(ID,NAME,PRICE,DESCRIPTION,CREATEDATE)

9

product-0-7

0.8

04/08/2011

ID name price createdate description
1|product-0-1 0[04/08/2011 e
2|product-0-9 0.1{04/08/2011 - -
3 |product-0-3 0.2({04/08/2011 - -
4|product-0-4 0.3[04/08/2011 - -
5 |product-0-5 0.4({04/08/2011 - -
6|product-0-2 0.5(04/08/2011 - -
7 |product-0-10 0.6(04/08/2011 - -
8|product-0-8 0.7(04/08/2011 - -

10

product-0-6

0.9

04/08/2011

SEQUENCE

FANDOM

SEQUENCE

SEQUENCE

SEQUENCE(ID,CHAR10,CHAR30,CHAR40,CHAR100,CHAR150)

ID

charl0

char30

char4()

ting two s

nz2 in which thers iz no oblig s

ez the GPL w200 co ke |

char100

char150

want to ¢

=y Soffwars Distribution lioen == =b5

1

2

3 Ell databa_q oping znd distributing various |= — . _
4|sive open o obligztion ofopening deriva |- whs 2 -

5 anagement ive works. The rezson of sdopt | =4 pevide medlims cotamvimga = _ o]
6le soutrce ¢ vasioms CUBRID bassd applicar |z e Besbeley Sefwa Divefbusion Be oo m oo come o o e _ e _ _
7|dent softw ter licenze, which allows dist == op= 1eus: sismendl dedbme - - -

8| services ERID doss 1ot Wenl o CTEats @ [mg ove opamss Semse ayascms & e o ~]
9Qlrbute or mized for Web applications. 25 |o differect Sosnse policies for Smerfal-— —enomm o s v e e _ |

10

ution lice

=z The CUBRID Hosme policy

| CimmaD saca mex wans

SEQUENCE

RANDOM

RANDOM

RANDOM

RANDOM

RANDOM

RANDOM(ID)

¢

¢

¢

—
R R N YT e VT N S s A T

FANDOM

RANDOM(ID,NAME)

D

name

product-0-1

product-0-2

product-0-3

product-0-4

product-0-5

product-0-6

product-0-7

product-0-8

product-0-9

1
6
3
4
5
10
9
g
2
7

product-0-10

RANDOM

SEQUENCE

RANDOM(ID,NAME,PRICE)

D

name

price

product-0-1

product-0-2

0.5

product-0-3

0.2

product-0-4

0.3

product-0-5

0.4

product-0-6

0.9

product-0-7

0.8

product-0-8

0.7

product-0-9

0.1

=t
L S Y O YT T O Y S PR o R)

product-0-10

0.6

FANDOM

SEQUENCE

FRANDOM

RANDOM(ID,NAME,PRICE,DESCRIPTION)

ID name price description
product-0-1] ————
product-0-2] E————————
product-0-3)] P ————
product-0-4) i P —————
product-0-3)| E——
product-0-6] ESEE———————
product-0-7 ()] U—————
product-0-8] T ———————
product-0-9 () R ———
product-0-10)]
RANDOM| SEQUENCE FANDOM SEQUENCE

—
B R SR Y e Y LW GRS WS o A

+ RANDOM(ID,CHAR10,CHAR30,CHAR40,CHAR100,CHAR150)

ID charl0 char30 char40 char100 char150
1|ting two s nse in which thars is no obligp = 851w 0 simmSemas it |
B6le source ¢ vasioss CUBRID based apgfizat - - _ S _ _
3 ;a_l databa_r, oping znd distributing various (= — - _
A|sive open o obligation of opening deriva -
3|anagement ive works. The rezson of adopt e e]

10|ution lice 2. T CUBRID) Soemsa palicy S — _
9|rbute or mized for Wb zpplications, 5 [o &iffsrem Bosmss pofizies for Smerfa| - — oo o]
8| services BRID doss not Want 10 CIS2t2 2 [sg swe smpesss Somas mpasmm v a8 | e ommom cim e s —me S —
2| want to ¢ =y Sefwars Distribution lizen s — .
7|dent softw ter license, which sllows dist |meve spm avumms miwensd dasbms m [o mmom o e I
RANDOM| RANDOM RANDOM BRANDOM RANDOM RANDOM

+ RANDOM(ID,NAME,PRICE,DESCRIPTION,CREATEDATE)

D name price createdate description
product-0-1 04/08/2011
product-0-2 0.5(04/08/2011 e e e
product-0-3 0.2(04/08/2011
product-0-4 0.3(04/08/2011 e e e
product-0-5 0.4(04/08/2011 e o e
product-0-6 0.9(04/08/2011 e e e
9|product-0-7 0.804/08/2011 e o e
8|product-0-8 0.7(04/08/2011 e e e
2
7

=]

L | e |l | O | =

1

(=]

product-0-9 0.1[04/08/2011

product-0-10 0.6]04/08/2011
RANDOM| SEQUENCE | RANDOM RANDOM SEQUENCE

® NBD Benchmark
This test was performed to verify CUBRID performance by using the NBD Benchmark tool, which has been
developed to verify the performance of the general bulletin board application framework. For more
information about NBD Benchmark, see separate documents.

ITI. Stability Test Scenario

DOTS, a sub-project of an open project called "Linux Test Project," is an open test tool for testing the DBMS.

B Test Related Schema (the Number of Data in Each Table)
CREATE TABLE REGISTRY (

USERID CHAR(15) NOT NULL PRIMARY KEY,
PASSWD CHAR(10),

ADDRESS CHAR(200),

EMAIL CHAR(40),

PHONE CHAR(15)

)i

CREATE TABLE ITEM (

ITEMID CHAR(15) NOT NULL PRIMARY KEY,
SELLERID CHAR(15) NOT NULL,
DESCRIPTION VARCHAR(250) ,

BID_PRICE FLOAT,

START_TIME DATE,

END_TIME DATE,

BID_COUNT INTEGER

)i
CREATE TABLE BID (

ITEMID CHAR(15) NOT NULL PRIMARY KEY,
BIDERID CHAR(15) NOT NULL,

BID_PRICE FLOAT,

BID_TIME DATE

)

m Data Size and How to Create Data

The initial number of data when starting the test is 0. Enter 1000 of data in the REGISTRY table
enter 100 of data in the ITEM table as well as in the bid table. Then, update 100 times.

B Transaction types

<~ INSERT transaction 1

INSERT INTO ITEM (ITEMID,SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT)
VALUES (2,2,2,2,2,2,?)

<> INSERT transaction 2

INSERT INTO BID (ITEMID,BIDERID,BID_PRICE,BID_TIME)
VALUES (2, ?, ?, ?

<~ SELECT transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID = ?

<~ SELECT transaction 2

SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?
SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?

. Next,

<> UPDATE transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID =
UPDATE ITEM SET DESCRIPTION = ?,BID_PRICE = ?,START_TIME = ?,END_TIME = ? WHERE ITEMID = ?

B How to Generate Load
<~ How to generate load

Use two threads to generate the initial load. Each thread repeats the insert/select/update queries mentioned
above. The DOTS program checks CPU usage every 5 minutes. If the Peak CPU usage does not exceed 100%, the
test continues, by adding two more threads.

IV. Scenario-based Code Coverage Results

LCOV - code coverage report

Current view: top level Hit Total Coverage
Test: Code Coverage Lines: 181448 241072 733 %
Date: 2011-04-26 Functions: 9209 10363 28.9%
Legend: Rating: [IRGRGEN medinm:>=75% high:>=90% Branches: 110173 187313

Y
Branches ¥

/home/xdbms/build/src/executables 934% 57/61 -_
/home/xdbms/build/src/parser 915% 746178152 987% 76177 -_
src/base EaEEEE - i [
src/broker -_ 01.5% 473/ 517 -_
src/cci R 216/263 150212733
src/communication -_ 771% 206384 -_
src/connection T61% 278/3572 883% 21073 [
src/executables -_ 83.7% 786 /939 -_
src/heaplayers $8.3% 68177 1000% /11
src/isp 838% 208/1071 100.0% s/ 62 [

5T6% | 14366/25812

src/object 76.4 % 21559 /28205 38.6% 1668 / 1883

bt

src/optimizer 38.9% 8322/9587 933 % 355/361 76.7 % 6340 / 8330

src/parser 81.6% 27361/ 33766 929% 1165/1254 -_
src/query v aensraes e24% 127501380 [EEEEH R
src/session 93.6% 44/ 47 -_
src/storage 99.4% mwsse [
src/thread 920% 80 /87 -_
sre/transaction 83.3% 821 /936 -_

