

This document is a verification report of CUBRID 2008 R4.0 Beta in terms of functionality, performance, stability.

CUBRID 2008 R4.0 Beta QA
Completion Report

.Table of Contents

1. Test Overview___ 3

1.1 Test Objectives ___ 4

1.2 Test Environment__ 4

1.2.1 TEST PROCEDURES ___ 4

1.2.2 HARDWARE TEST ENVIRONMENT ___ 6

1.3 Test Category ___ 6

2. Test Results __ 8

2.1 Functionality Test Results ___ 9

2.1.1 BASIC QUERY TEST ___ 9

2.1.2 BASIC UTILITY AND OTHER SCENARIO TESTS __ 9

2.1.3 HA FEATURE TEST __ 9

2.2 Performance Test Results ___ 10

2.2.1 CUBRID BASIC PERFORMANCE TEST __ 10

2.2.2 CUBRID INDEX VOLUME PERFORMANCE TEST __ 12

2.2.3 NBD BENCHMARK PERFORMANCE TEST __ 17

2.3 Stability Test Results ___ 18

2.4 Other Test Results ___ 20

2.5 Quality Index ___ 21

3. Conclusions ___ 22

Appendix ___ 24

I. Functionality Test Scenarios ___ 25

II. Performance Test Scenario__ 28

III. Stability Test Scenario __ 35

IV. Scenario-based Code Coverage Results ___ 37

1.Test Overview

1.1 Test Objectives

The objectives of this test are to perform functionality, performance and stability tests for the final release candidate

build of CUBRID 2008 R4.0 Beta (hereinafter referred to as R4.0 Beta), which is under development for release in

April 2011 and to determine its release based on the test results. To test the stability of CUBRID, a test environment

was configured as described below. Based on a comparison between the performance test result of CUBRID 2008

R4.0 Beta and that of CUBRID 2008 R3.1 (hereinafter referred to as R3.1), we tested to determine whether the

performance of R4.0 Beta was regressed or improved.

 CentOS 4.6 (32/64-bit) or compatible

 Windows 2003 (32/64-bit) or compatible

 Final test build: 8.4.0.0195 (Linux 64bit/32bit, Windows 64bit/32bit)

1.2 Test Environment

1.2.1 Test Procedures

Tests to verify the CUBRID product are shown below. The test sequence used may differ from the one described

here. To verify product stability and functionality, performance, functionality, stability and other tests were

performed for 4 types of builds as shown in the figure below. The details of each test are described in the appendix

of this report.

 CUBRID test procedures

 System diagram for basic test

 System diagram for HA test

1.2.2 Hardware Test Environment

Servers for the CUBRID test and their usage are listed in the table below.

1.3 Test Category

The following tests were performed to determine whether CUBRID can be released. The details of each test are

described in the appendix of this report.

 Functionality test

 SQL query test

 MEDIUM query test

 SITE query test

 Utility (Shell) test

 Basic HA feature test

 CCI/PHP/JDBC Interface test

 Performance test

 NBD Benchmark

 Performance test for basic DBMS functions

 Performance test for index volume size

 Stability test

 DOTS stress test

 HA Enhancement

 TPC-W test

 SQL/MEDIUM with valgrind test

 Dots on HA test

Name OS CPU MEMORY DISK

 Host 1 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (dual-core) * 1 4 GB SATA 500G * 2 (No Raid)

 Host 2 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 3 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 4 Windows 2003 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 5 Windows 2003 (32-bit) Xeon 2.10 GHz (quadcore) * 1 4 GB SATA 500G * 2 (No Raid)

 Host 6 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 7 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 8 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 1 8 GB SATA 500G * 2 (No Raid)

 Host 9 Cent OS 4.6 (64-bit) Xeon 2.10 GHz (quadcore) * 1 8 GB SATA 500G * 2 (No Raid)

 Porting replication scenario test

 Other tests

 Test for checking CUBRID 2008 R4.0 Beta functionalities/bug fixes

 Memory check by Valgrind

2.Test Results

2.1 Functionality Test Results

2.1.1 Basic Query Test

This test was performed to verify the basic DBMS functionalities by using SQL statements. SQL statements stored in

8943 files were tested to verify DBMS conformity. We executed the stored SQL statements in a JDBC-based

application and compared the results to the stored reference file for verification.

Test Category Total Number of
Scenarios

Number of Successful Tests Success Rate

SQL query test 8582 8582 100%

MEDIUM query test 970 970 100%

SITE query test 1213 1213 100%

2.1.2 Basic Utility and Other Scenario Tests

This test was performed to verify the basic DBMS functionalities by using shell scripts. In particular, this test was also

performed to verify CUBRID utilities that could not be tested by using SQL statements. We ran scenarios written by

472 shell scripts to verify DBMS conformity.

Test Category Total Number of

Scenarios

Number of Successful Tests Success Rate

Utility 207 207 100%

Bug regression 175 175 100%

Environment variable 7 7 100%

Other 83 83 100%

2.1.3 HA Feature Test

Test Category Total Number of
Scenarios

Number of Successful
Tests

Success Rate

Data replication test 5 5 100%

Node fault test 16 16 100%

Process fault test 8 8 100%

Broker fault test 8 8 100%

Run replication test sce
narios

115 115 100%

2.2 Performance Test Results

2.2.1 CUBRID Basic Performance Test

This test was performed to check the performance of the CUBRID DBMS basic operations, which are select, insert,

update and delete. For more information about test scenarios, see the appendix. For all environment variables,

except for SQL_LOG=OFF in cubrid_broker.conf, default configuration values were used. As shown in the table below,

we have found that the overall basic performance of CUBRID 2008 R4.0 Beta was significant better than that of

CUBRID 2008 R3.1. Especially performance improvement of CUBRID 2008 R4.0 is significant in this test because the

sequence of data in insert/update/delete/select is sequenced. Refer to appendix II for more information.

 Linux: Performance Comparison between CUBRID 2008 R3.1 and CUBRID 2008 R4.0 Beta (64-bit)

(Unit: TPS)

idx(a) idx(a,b) idx(a,b,c)

 R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

 Insert 21241 56596 266% 37974 54978 145% 21323 54441 255%

 Update 63531 75228 118% 70995 72467 102% 66133 75038 113%

 Select 90941 82114 90% 89059 81777 92% 88248 83753 95%

 Delete 41663 62419 150% 37176 56609 152% 41712 56027 134%

 Total 217376 276357 127% 235204 265831 113% 217416 269259 124%

 Linux: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

Similarly to the results for the 64-bit tests, we have found that there was significant change in performance

between 32-bit CUBRID 2008 R3.1 and 32-bit CUBRID 2008 R4.0 Beta except select operation. Select

performance of 32/64-bit R4.0 Beta is lower about 5% than 32/64-bit R4.0 Beta. It is needed to investigate it

more in the future.

(Unit: TPS)

idx(a) idx(a,b) idx(a,b,c)

 R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perform
ance
Ratio

 Insert 21376 56818 266% 38592 56146 145% 20873 52891 253%

 Update 62092 73858 119% 66882 70160 105% 67751 71885 106%

 Select 87359 79608 91% 84773 78876 93% 86248 82267 95%

 Delete 41346 58292 141% 36262 54763 151% 34899 52802 151%

 Total 212173 268576 127% 226509 259945 115% 209771 259845 124%

 Windows: Performance Comparison between CUBRID 2008 R3.1 (64-bit) and CUBRID 2008 R4.0 Beta (64-bit)

(Unit: TPS)

idx(a) idx(a,b) idx(a,b,c)

 R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

 Insert 17385 26580 153% 16334 24519 150% 16566 26002 157%

 Update 17576 29956 170% 17106 29383 172% 16977 31574 186%

 Select 20837 33984 163% 20404 30958 152% 21279 32409 152%

 Delete 15278 26526 174% 14533 25530 176% 15569 23931 154%

 Total 71076 117046 165% 68377 110390 161% 70391 113916 162%

 Windows: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

Similarly to the results for the Windows 64-bit tests, we have found that there was significant change in

performance between 32-bit CUBRID 2008 R3.1 and 32-bit CUBRID 2008 R4.0 Beta.

(Unit: TPS)

idx(a) idx(a,b) idx(a,b,c)

 R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

R3.1
R4.0
Beta

Perfor
mance
Ratio

 Insert 19208 36179 188% 19173 35458 185% 18942 36563 193%

 Update 20131 37688 187% 20029 38192 191% 20054 38099 190%

 Select 27244 38499 141% 27162 38356 141% 27139 38014 140%

 Delete 16287 37062 228% 15972 36027 226% 15641 35830 229%

 Total 82870 149428 180% 82336 148033 180% 81776 148506 182%

2.2.2 CUBRID Index Volume Performance Test

This test was performed to check index volume reducement amount in case of various index types and data

generation types. Expecially we have focused on inserted data sequence, random and ordered. For more information

about test scenarios, see the appendix. As shown in the table below, we have found that there was significant

promotion in performance between CUBRID 2008 R4.0 Beta and CUBRID 2008 R3.1.

 Linux: Performance Comparison between CUBRID 2008 R3.1 and CUBRID 2008 R4.0 Beta (64-bit)

On Linux 64-bit, the overall test results has significant change. Not only index size of CUBRID R4.0 Beta has

significant save (about 50%) than that of CUBRID 2008 R3.1, but also run time has corresponding significant

decrease (about 56%).

In addition, as shown in last two table below, we have found that there was significant change between

CUBRID 2008 R4.0 and CUBRID 2008 R3.1. For CUBRID 2008 R4.0, sequence mode has better performance of

index size than random mode. But for CUBRID 2008 R3.1, random mode has better performance of index size

than sequence mode.

For above table, SEQUENCE(ID) means that data in column ID is inserted by sequence and ascending order.

RANDOM(ID, NAME) means that data in column ID is inserted by random order and data in column NAME is inserted

by sequence and ascending order. For more information about test scenarios, see the appendix.

 Linux: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

On Linux 32-bit, the overall test results were the same as the Linux 64-bit results, and no significant difference

was found.

 Windows: Performance Comparison between CUBRID 2008 R3.1 (64-bit) and CUBRID 2008 R4.0 Beta (64-bit)

On Windows 64-bit, the overall test results were the same as the Linux 64-bit results, and no significant

difference was found.

 Windows: Performance Comparison between CUBRID 2008 R3.1 (32-bit) and CUBRID 2008 R4.0 Beta (32-bit)

On Windows 32-bit, the overall test results were the same as the Linux 64-bit results, and no significant

difference was found.

2.2.3 NBD Benchmark Performance Test

This test was performed to verify CUBRID performance by using the NBD Benchmark tool, which has been developed

to verify the performance of the general bulletin board application framework. The scalability of the test DB was

Level 1. As shown in the results below, there was no significant difference in NBD Benchmark test loads between

R3.1 and R4.0 Beta.

Platform Version BIT Page View

 CUBRID 2008 R3.1 (Default parameter configured) 64-bit 892

 CUBRID 2008 R3.1 (Default parameter configured) 32-bit 856

 CUBRID 2008 R4.0 Beta (Default parameter configured) 64-bit 876

 CUBRID 2008 R4.0 Beta (Default parameter configured) 32-bit 871

 The following graphs represent the usage rate of each resource while processing the NBD benchmark test on Linux

64-bit.

2.3 Stability Test Results

DOTS, a sub-project of an open project called "Linux Test Project," is an open test tool for testing the DBMS. For

more information about DOTS, see the appendix. As shown in the test results below, the system operated stably

without any abnormalities during the 24-hour load period. You can ignore the fails because they are unique violations

due to the modification of duplicate data.

 Number of accumulated SQL queries

 CPU usage

 Memory usage

2.4 Other Test Results

All bug fixes resolved in CUBRID 2008 R4.0 Beta have been confirmed.

2.5 Quality Index

The standard quality index of CUBRID 2008 R4.0 Beta is listed below.

Quality Index
Name

Project

Quality
Standard

Approved
Quality
Index

during
Implementat
ion

Measurement Target

Coding Standards

Compliance Rate
100% 100%

Number of coding conventions observed in
a project

56

Number of coding conventions applied to
each team

56

Code Review

Execution Rate
100% 100%

Number of source code lines for which
code review is performed.

868,083 LOC

Total number of source code lines in the
changed files

868,083 LOC

QA Scenario

Code Coverage
75% 75.27%

Number of tested statements 181,448

Total number of statements 241,072

Fault Density
Detected by

Static Analysis

4

/KLOC

2.4

/KLOC

Number of faults detected by static
analysis (Level 1)

126

Number of faults detected by static
analysis (Level 2)

7

Number of faults detected by static
analysis (Level 3)

390

Number of faults detected by static
analysis (Level 4)

0

Total number of source code lines 766,613 LOC

Cyclomatic Code

Complexity

3.3% 2.65%

Number of modules whose complexity is
over 30

599

Total number of modules in a project 22,645

12% 14.56% Number of modules whose complexity is
over 10

3,298

Total number of modules in a project 22,645

3. Conclusions

As described in Chapters 1 and 2, CUBRID 2008 R4.0 Beta has been tested in terms of its functionality,

performance, stability and other issues before its release.

The tests have been performed in the Linux 32-bit, Linux 64-bit, Windows 32-bit and Windows 64-bit
environments. All tests were successful, and did not show any special issues for either platform type

(32/64-bit) on Linux/Windows.

Based on the results obtained through the basic performance test, we have found that the overall basic

performance of CUBRID 2008 R4.0 Beta was significant better than that of CUBRID 2008 R3.1. But select
operation is lower about 5% than that of CUBRID 2008 R3.1 in only Linux 32/64-bit. It is needed to

investigate it more in the future.

Based on the results obtained through the index volume performance test, we have found that the overall
save of index volume size of CUBRID 2008 R4.0 Beta was better about 50% than that of CUBRID 2008

R3.1. Also, we have found that there was another significant change between CUBRID 2008 R4.0 and
CUBRID 2008 R3.1. For CUBRID 2008 R4.0, sequence mode has better performance of index size than

random mode.

Based on the results obtained through the NBD benchmark test, we have found that there was no

significant change in performance between CUBRID 2008 R3.1 and CUBRID 2008 R4.0 Beta.

Appendix

I. Functionality Test Scenarios

This test was performed to verify the basic DBMS functionalities by using SQL statements. SQL statements stored in files were

tested to verify DBMS conformity. We executed the stored SQL statements in a JDBC-based application, and compared the

results to the stored reference file for verification. The scenario files included in the basic functionality test are stored in the

SQL and MEDIUM directories of the CUBRID QA tool.

 SQL Query Test

Total: 8582

Case Name Path Description

object sql/_01_object
Performs functionality tests of objects supported by
CUBRID, and has the largest number of scenarios (3200
scenarios).

user_authorization sql/_02_user_authorization
Performs functionality tests of user and authorization
management.

object_oriented sql/_03_object_oriented
Performs tests for the object-oriented concept. CUBRID is
an object-relational database management system
(DBMS).

operator_function sql/_04_operator_function
Performs functionality tests of basic functions and
operators supported by CUBRID.

manipulation sql/_06_manipulation

Performs tests of the insert, update, delete, and select
statements, which are the most commonly used SQL
statements in DML. Basic statements, subqueries and

various join queries are tested.

misc sql/_07_misc
Performs functionality tests of DCL (Data Control
Language), including statistics update or other
functionalities.

javasp sql/_08_javasp Performs functionality tests of Java stored procedures.

64-bit sql/_09_64bit
Performs basic functionality test scenarios of the bigint and
datetime types, which have been added in CUBRID 2008
R2.0.

Connect_by sql/_10_connect_by
Performs a test of the hierarchical query feature, which
has been added in CUBRID 2008 R3.1.

Codecoverage sql/_11_codecoverage
Performs a test of uncovered codes based on the code
coverage results, which has been newly added in CUBRID

2008 R4.0 Beta.

Syntax Extension sql/_12_mysql_compatibility
Performs a test of the syntax extension, which has been
added in CUBRID 2008 R3.1.

BTS issues sql/_13_issues
Performs a test of known issues, which comes from issu
e management system.

MySQL compatibility sql/ _14_mysql_compatibility_2
Performs an unit test of the syntax extension 2, which has
been added in CUBRID 2008 R4.0 Beta.

FBO sql/ _15_fbo
Performs a test of the FBO feature, which has been added
in CUBRID 2008 R3.1.

Index enhancement sql/ _16_index_enhancement
Performs an unit test of the index enhancement, which
has been added in CUBRID 2008 R4.0 Beta.

SQL Extension sql/ _17_sql_extension2

Performs a test of the syntax extension
2, which has been added in CUBRID 2008 R4.0 Beta. Inclu
des a test of syntax enhancements, system parameters,
 show statements, date/time functions, string functions,

 aggregate functions, other functions.

Index enhancement sql/ _18_index_enhancement_qa

Performs a test of the i n d e x e n h a n c e m e n
t, which has been added in CUBRID 2008 R4.0 Beta. Inclu
des a test of limit optimizing, using index clause enhan
cement, descending index scan, covering index, orderin
g index, optimizing group by clause, Index scan with lik
e predicate, next key locking,etc.

 MEDIUM Query Test

Total: 970

Case Name Path Description

01_fixed medium/_01_fixed Performs regression test scenarios for bug fixes that have been
implemented since the initial version.

02_xtests medium /_02_xtests Performs test scenarios for functionalities supported by CUBRID,
but not by other DBMSs.

03_full_mdb medium /_03_full_mdb Performs test scenarios for sequential/index scan queries with an
index.

04_full medium /_04_full Performs test scenarios that include testing queries for limit values
of CUBRID.

05_err_x medium /_05_err_x Performs negative test scenarios for functionalities that are
supported by CUBRID, but not by other DBMSs.

06_fulltests medium /_06_fulltests Performs test scenarios for search queries with OIDs.

07_mc_dep medium /_07_mc_dep Includes a query that gives various conditions to a WHERE clause in
the SELECT query, and tests whether or not a correct result has
been selected.

08_mc_ind medium/_08_mc_ind Includes scenarios that test queries performing schema change.

 SITE Query Test

Total: 1215

Case Name Path Description

k_count_q site/k_count_q Retrieves count (*) results of a query that is included in the kcc_q query.

k_merge_q site/k_merge_q Forces to give a hint to the kcc_q queries allowing merge joins.

k_q site/k_q

Performs tests for OID reference, collection type, and path expression
that are part of the object-oriented concept supported by CUBRID with
different scalabilities. In addition, it performs functionality tests while
increasing the number of join participating tables.

n_q site/n_q
Performs tests for a complex query in which subqueries, outer/inner
joins or group-by queries are combined, and checks whether correct
results are retrieved.

 Utility (Shell) Test

This test was performed to verify the basic DBMS functionalities by using shell scripts. In particular, this test was also

performed to verify CUBRID utilities that cannot be tested by using SQL statements. We ran scenarios written using shell

scripts to verify DBMS conformity.

Total: 472

Case Name Path Description

utility shell/_01_utility
Includes a script that tests the database management
commands supported by CUBRID.

sqlx_init shell/_02_sqlx_init
Includes scenarios that change the configuration of CUBRID
DBMS parameters, and checks whether they are working
correctly.

itrack shell/_03_itrack
Includes scenarios that verify there is no regression by
checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.

addition Shell/_05_addition
Includes scenarios added to improve code coverage and
mainly tests the options of CUBRID utilities.

BTS issues shell/_06_issues
Includes scenarios that verify there is no regression by
checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.

Index enhancement shell/_07_index_enhancement

Includes scenarios that verify next key lock and change the
configuration of CUBRID DBMS related to index
enhancement, which has been added in CUBRID 2008 R4.0
Beta.

MySQL compatibility shell/_23_mysql_compatibility
Includes scenarios that verify syntax extension, which has
been added in CUBRID 2008 R3.1.

 HA Feature Test

Total: 37

Case Name Path Description

Data replication test
execp/UsualCase

Includes scenarios that check whether HA replication is properly
performed in a normal state with no fault.

Node fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a node fault occurs during insert/update/delete
operations.

Process fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a process fault occurs that causes the database process
to stop during insert/update/delete operations.

Broker fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a broker fault occurs during insert/update/delete
operations.

Replication scenario scripts/sql Includes scenarios that test whether HA is working properly for each
CUBRID transaction type, and has two sub directories: random_case and
special_case

II. Performance Test Scenario

 CUBRID Basic Performance Test

To evaluate the basic performance of DBMS, the following 5 variables were used. Database Server, Broker, and Load

Generator were run on a single server.

 Number of data (or number of program loops)

 Total number of data: 900,000 items

 Number of program loops: 100,000 loops/program (900,000 items)

 COMMIT Interval

- After every execution

- After 100 executions

- After 1,000 executions

 Number of concurrent users

- 5 users

- 10 users

 Number of index attributes

- create index idx1 on xoo(a)

- create index idx2 on xoo(a,b)

- create index idx3 on xoo(a,b,e)

 Interface

- JDBC (Dynamic SQL): Prepared statements were used.

 Test data

 Test schema

CREATE TABLE xoo (
 a int,
 b int,
 c int,
 d int,
 e char(10),
 f char(20),
 g char(30)
)

CREATE INDEX idx1 on xoo(a);
CREATE INDEX idx2 on xoo(a,b);
CREATE INDEX idx3 on xoo(a,b,e);

 Test data

Enter data from 1 to 450,000; total number of data is 900,000.

 How to perform a test

 Insert/update/select/delete data from a specific number.

 For concurrent user tests, the start and end numbers are defined to prevent data from overlapping,

in order to ensure that there is no competition between the concurrent clients.

 For concurrent user test programs, a JDBC test program is tested with a multi-threaded program,

and a C program is tested with a multi-process program.

 If the number of loops is 10,000, a user repeats execution 10,000 times in the case of the 1-user

test, and each user repeats execution 2,000 times in the case of the 5-user test. Similarly, if the

number of loops is 100,000, a user repeats execution 100,000 times in the case of the 1-user test,

and each user repeats execution 20,000 times in the case of the 5-user test.

 How to measure test results

 Measure the number of loops per second.

 For concurrent user tests, add the execution times of all users.

 CUBRID Index Volume Performance Test

To evaluate the index volume size and run time performance, below guide should be followed.

 Purpose

 Compare the index size of CUBRID R4.0 Beta with CUBRID R3.1, to check whether the former's

index size smaller to later.

 Compare the inserting speed of CUBRID R4.0 Beta with CUBRID R3.1, to check whether the

former's inserting speed faster to later.

 After a larget amount of data inserting operation at CUBRID R4.0 Beta and R3.1, verify whether the

index data is integrated and data don't lost or damaged

 Test Requirements

 Modify CUBRID configuration info

 data_buffer_pages=250000

 temp_file_memory_size_in_pages=12

 sort_buffer_pages=128

 media_failure_support=no

 Create enough space for the index, the scripts are as below

 cubrid addvoldb -p index testdb 1000000 -S (execute 6 times)

 cubrid addvoldb -p data testdb 1000000 -S (execute 8 times)

 cubrid addvoldb -p temp testdb 1000000 -S (execute 2 times)

 Test completion conditions

 The index size of CUBRID R4.0 Beta will smaller than CUBRID R3.1 at same data size ,the system

resource is normal.

 After a larget amount of data inserting operation, the index data of CUBRID is integrated and data

don't lost or damaged.

 The inserting speed of CUBRID R4.0 Beta is faster than CUBRID R3.1.

 For CUBRID R4.0 Beta, the index used space of order index larger than random index, For CUBRID

R3.1 the index used space of order index smaller than random index.

 In the frequently execute database operation (e.g. create table, insert, update,delete) ,execute

"checkdb" & "compactdb" command, the result is ok.

 How to insert data for every index type

 Overall

Build a dictionary data table, there are two column to decide the order of other column (ID,Random) ,if insert

data for "sequence type index", I will select data order by ID colum, if insert data for "random type index", I will

select data order by RANDOM column, the demo dictionary are as below. I only build 10 rows data for test report,

but at real test environment, there are 5,000,000 row data.

How to generate test data for each case.

 SEQUENCE(ID)

 SEQUENCE(ID,NAME)

 SEQUENCE(ID,NAME,PRICE)

 SEQUENCE(ID,NAME,PRICE,DESCRIPTION)

 SEQUENCE(ID,NAME,PRICE,DESCRIPTION,CREATEDATE)

 SEQUENCE(ID,CHAR10,CHAR30,CHAR40,CHAR100,CHAR150)

 RANDOM(ID)

 RANDOM(ID,NAME)

 RANDOM(ID,NAME,PRICE)

 RANDOM(ID,NAME,PRICE,DESCRIPTION)

 RANDOM(ID,CHAR10,CHAR30,CHAR40,CHAR100,CHAR150)

 RANDOM(ID,NAME,PRICE,DESCRIPTION,CREATEDATE)

 NBD Benchmark

This test was performed to verify CUBRID performance by using the NBD Benchmark tool, which has been

developed to verify the performance of the general bulletin board application framework. For more

information about NBD Benchmark, see separate documents.

III. Stability Test Scenario

DOTS, a sub-project of an open project called "Linux Test Project," is an open test tool for testing the DBMS.

 Test Related Schema (the Number of Data in Each Table)

CREATE TABLE REGISTRY (
 USERID CHAR(15) NOT NULL PRIMARY KEY,
 PASSWD CHAR(10),
 ADDRESS CHAR(200),
 EMAIL CHAR(40),
 PHONE CHAR(15)
);

CREATE TABLE ITEM (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 SELLERID CHAR(15) NOT NULL,
 DESCRIPTION VARCHAR(250) ,
 BID_PRICE FLOAT,
 START_TIME DATE,
 END_TIME DATE,
 BID_COUNT INTEGER
);

CREATE TABLE BID (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 BIDERID CHAR(15) NOT NULL,
 BID_PRICE FLOAT,
 BID_TIME DATE
);

 Data Size and How to Create Data

The initial number of data when starting the test is 0. Enter 1000 of data in the REGISTRY table. Next,

enter 100 of data in the ITEM table as well as in the bid table. Then, update 100 times.

 Transaction types

 INSERT transaction 1

INSERT INTO ITEM (ITEMID,SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT)
VALUES (?, ?, ? ,?, ?, ?, ?)

 INSERT transaction 2

INSERT INTO BID (ITEMID,BIDERID,BID_PRICE,BID_TIME)
VALUES (?, ?, ?, ?)

 SELECT transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID = ?

 SELECT transaction 2

SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?
SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?

 UPDATE transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID =
UPDATE ITEM SET DESCRIPTION = ?,BID_PRICE = ?,START_TIME = ?,END_TIME = ? WHERE ITEMID = ?

 How to Generate Load

 How to generate load

Use two threads to generate the initial load. Each thread repeats the insert/select/update queries mentioned

above. The DOTS program checks CPU usage every 5 minutes. If the Peak CPU usage does not exceed 100%, the

test continues, by adding two more threads.

IV. Scenario-based Code Coverage Results

