

This document is the verification report of CUBRID 9.1 in terms of functionality, performance and stability.

CUBRID 9.1 QA Completion
Report

CUBRID 9.1 QA Completion Report

2

Table of Contents

CUBRID 9.1 QA Completion Report ___ 1

1. Test Overview __ 4

1.1 Test Objectives __ 5

1.2 Test Environment ___ 5

1.2.1 TEST PROCEDURES ___ 5

1.2.2 HARDWARE TEST ENVIRONMENT __ 8

1.3 Test Category ___ 9

2. Test Results __ 10

2.1 Functionality Test Results ___ 11

2.1.1 BASIC QUERY TESTS ___ 11

2.1.2 BASIC UTILITY AND OTHER SCENARIO TESTS __ 11

2.1.3 HA FEATURE TESTS __ 11

2.1.4 HA REPLICATION TESTS __ 12

2.1.5 CCI INTERFACE TESTS ___ 12

2.1.6 JDBC INTERFACE TESTS __ 13

2.1.7 CAS4MYSQL/ORACLE TESTS ___ 13

2.2 Performance Test Results ___ 14

2.2.1 CUBRID BASIC PERFORMANCE TEST __ 14

2.2.2 YCSB PERFORMANCE TEST___ 18

2.2.3 SYSBENCH PERFORMANCE TEST __ 24

2.2.4 NBD BENCHMARK PERFORMANCE TEST__ 27

2.2.5 DATA REPLICATION TEST ON HA ___ 30

2.2.6 TPC-C PERFORMANCE TEST __ 30

2.3 Stability Test Results __ 31

2.4 Live Service Simulation Test Result ___ 32

CUBRID 9.1 QA Completion Report

3

2.5 Compatibility Test Results ___ 35

2.6 Installation Test Results ___ 36

2.7 Other Test Results __ 37

2.8 Quality Index __ 38

3. Conclusions __ 39

Appendix __ 41

I. Functionality Test Scenarios ___ 42

II. Performance Test Scenarios ___ 47

III. Stability Test Scenarios __ 56

IV. Live Service Simulation Test Scenarios __ 58

V. Scenario-based Code Coverage Results ___ 62

VI. JDBC Code Coverage Results ___ 62

1.Test Overview

CUBRID 9.1 QA Completion Report

5

1.1 Test Objectives

The objectives of this test are to perform functionality, performance and stability tests for the final

release candidate build of CUBRID 9.1 (hereinafter referred to as 9.1), which is under development for

release in March 2013, and to determine its release based on the test results. To test the stability of

CUBRID, test environments were configured as described below. Based on comparisons between the

performance test results of CUBRID 9.1 and those of CUBRID 9.0 Beta (hereinafter referred to as 9.0

Beta), we have tested to determine whether the performance of CUBRID 9.1 has improved or not.

 CentOS 5.6 (32/64-bit) or compatible

 CentOS 5.3 (32/64-bit) or compatible

 CentOS 4.7 (32/64-bit) or compatible

 Windows 2003 (32/64-bit) or compatible

 Final test build: 9.1.0.0212 (Linux 64-bit/32-bit, Windows 64-bit/32-bit)

1.2 Test Environment

1.2.1 Test Procedures

Tests to verify the CUBRID product are shown below. The test sequence used may be different from the

one described here. To verify product stability, functionality, performance and other tests were

performed for 4 types of builds as shown in the figure below. The details of each test suite are described

in the appendix of this report.

CUBRID 9.1 QA Completion Report

6

Figure 1. CUBRID Test Procedure

Figure 2. System Diagram for Basic Test

CUBRID 9.1 QA Completion Report

7

Figure 3. System Diagram for HA Test

CUBRID 9.1 QA Completion Report

8

1.2.2 Hardware Test Environment

Servers for the CUBRID test and their usage are listed in the table below.

Name OS CPU MEMORY DISK

Host 1 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 2 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 3 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 4 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 5 Cent OS 5.6 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 6 Cent OS 5.6 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 7 Cent OS 5.6 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 8 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 32 GB SAS 600G * 3 (Raid5)

Host 9 Windows 2003 (64-bit) Xeon 2.33 GHz (quad cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 10 Windows 2003 (32-bit) Xeon 2.0 GHz (quad cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 11 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 12 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 13 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 14 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 15 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

CUBRID 9.1 QA Completion Report

9

1.3 Test Category

The following tests were performed to determine whether CUBRID 9.1 meets the criteria of release. The

details of each test are described in the appendix of this report.

 Functionality tests

 SQL query test

 MEDIUM query test

 SITE query test

 Utility (Shell) test

 HA Feature test

 HA Replication test

 CCI Interface test

 JDBC Interface test

 CAS4MySQL/Oracle

 Performance tests

 Basic Performance Test

 YCSB Benchmark

 SysBench

 NBD Benchmark

 Data Replication Test on HA

 TPC-C Benchmark

 Stability tests

 DOTS stress test

 TPC-W on HA test

 Compatibility tests

 JDBC compatibility test

 CCI compatibility test

 Live Service Simulation test

 Installation tests

 Other tests

 Test for checking CUBRID 9.1 functionalities/bug fixes

 Memory check

 Execute SQL/MEDIUM with Valgrind

 Execute SysBench with Valgrind

 Execute TPC-C with Valgrind

 Execute SQL with pmap to monitor cub_server

CUBRID 9.1 QA Completion Report

10

2.Test Results

CUBRID 9.1 QA Completion Report

11

2.1 Functionality Test Results

2.1.1 Basic Query Tests

This test was performed to verify the basic DBMS functionalities using SQL statements. SQL statements

stored in 14,274 files have been executed to verify DBMS conformity. We have executed the stored SQL

statements in a JDBC-based application and compared the results with the stored reference files for

verification.

Table 1. Result of Basic Query Tests

Test Category Number of Scenario
Files

Number of Scenario
Files passed

Pass Rate

SQL query test 12,091 12,091 100%

MEDIUM query test 970 970 100%

SITE query test 1,213 1,213 100%

2.1.2 Basic Utility and Other Scenario Tests

This test was performed to verify the basic DBMS functionalities using shell scripts. In particular, this test

was also performed to verify CUBRID utilities that could not be tested by SQL statements. Scenarios of

1,560 shell scripts have been executed to verify DBMS conformity.

Table 2. Result of Basic Utility and Other Scenario Tests

Test Category Number of Scenario

Files

Number of Scenario

Files passed

Pass Rate

Utility 225 225 100%

Bug regression 836 836 100%

Environment variable 7 7 100%

Other 492 492 100%

2.1.3 HA Feature Tests

Scenarios of 293 shell scripts have been executed to verify HA features and the regressions.

CUBRID 9.1 QA Completion Report

12

Table 3. Result of HA Feature Tests

Test Category Number of

Scenario Files

Number of Scenario

Files passed

Pass Rate

Data replication test 5 5 100%

Bug regression 141 141 100%

Node fault test 16 16 100%

Process fault test 8 8 100%

Broker fault test 8 8 100%

Run replication test
scenarios

115 115 100%

2.1.4 HA Replication Tests

HA Replication Test is a QA tool which runs SQL test cases on HA Master, and then verifies data

consistency between Master and Slave. Scenarios of 12,182 SQL files have been executed to verify data

consistency between Master and Slave.

Table 4. Result of HA Replication Tests

Test Category Number of

Scenario
Files

Number of Scenario

Files passed

Pass Rate

Test Cases migrated from
SQL suite

12,091 12,091 100%

Bug regression 91 91 100%

2.1.5 CCI Interface Tests

CCI Interface Test is to verify if all the CCI APIs of CUBRID can work well as described in the CUBRID

manual. Scenarios of 250 shell scripts have been executed to verify all the CCI APIs and the regressions.

Table 5. Result of CCI Interface Tests

Test Category Number of Scenario

Files

Number of Scenario

Files passed

Pass Rate

Basic features 207 207 100%

Bug regression 43 43 100%

CUBRID 9.1 QA Completion Report

13

2.1.6 JDBC Interface Tests

Scenarios of 1,529 shell scripts have been executed to verify all the JDBC APIs and the regressions.

Table 6. Result of JDBC Interface Tests

Test Category Number of
Scenario Files

Number of Scenario
Files passed

Pass Rate

Features test 1,529 1,529 100%

2.1.7 CAS4MySQL/Oracle Tests

Scenarios of 64 shell scripts have been executed to verify the features of CAS4MySQL and CAS4Oracle.

Table 7. Result of CAS4MySQL/Oracle Tests

Test Category Number of Scenario

Files

Number of Scenario

Files passed

Pass Rate

CAS4MySQL 30 30 100%

CAS4Oracle 34 34 100%

CUBRID 9.1 QA Completion Report

14

2.2 Performance Test Results

2.2.1 CUBRID Basic Performance Test

This test was performed to check the performance of the CUBRID DBMS basic operations, which are

select, insert, update and delete. For more information about test scenarios, see the appendix II. For all

the configuration variables, except for SQL_LOG=OFF in cubrid_broker.conf, default configuration values

were used. As shown in the table below, we can find that the performance of basic performance test is

almost same as the results of 9.0 Beta. Based on the results we can say that 9.1 is a quite stable version.

A. Linux: Performance Comparison between 9.0 Beta and 9.1 (64-bit)

We can find that the performance of INSERT, UPDATE, SELECT and DELETE operations are almost same

as that of 9.0 Beta, which means that 9.1 is a quite stable version.

Figure 4. Performance Comparison between 9.0 Beta and 9.1 (Linux 64-bit)

CUBRID 9.1 QA Completion Report

15

Table 8. Performance Comparison between 9.0 Beta and 9.1 (Linux 64-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio

Insert 101,849 100,692 99% 103,715 102,328 99% 101,529 101,237 100%

Update 120,147 122,786 102% 117,345 119,770 102% 116,842 118,623 102%

Select 124,448 125,633 101% 122,744 122,971 100% 122,331 123,411 101%

Delete 103,827 106,302 102% 98,011 99,102 101% 95,799 96,944 101%

Total 450,271 455,413 101% 441,815 444,171 101% 436,501 440,215 101%

(Unit: TPS)

B. Linux: Performance Comparison between 9.0 Beta (32-bit) and 9.1 (32-bit)

We can find that the performances of all operations are same as that of 9.0 Beta.

Figure 5. Performance Comparison between 9.0 Beta and 9.1 (Linux 32-bit)

Table 9. Performance Comparison between 9.0 Beta and 9.1 (Linux 32-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio

Insert 94,571 92,718 98% 97,073 95,408 98% 94,711 93,105 98%

Update 112,309 112,089 100% 109,549 111,148 101% 108,643 110,331 102%

Select 118,142 117,236 99% 116,189 115,815 100% 115,766 116,079 100%

Delete 96,056 95,641 100% 91,145 91,219 100% 88,509 89,212 101%

Total 421,078 417,684 99% 413,956 413,590 100% 407,629 408,727 100%

(Unit: TPS)

CUBRID 9.1 QA Completion Report

16

C. Windows: Performance Comparison between 9.0 Beta (64-bit) and 9.1 (64-bit)

Performances of all operations have shown little change from 9.0 Beta.

Figure 6. Performance Comparison between 9.0 Beta and 9.1 (Windows 64-bit)

Table 10. Performance Comparison between 9.0 Beta and 9.1 (Windows 64-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio
9.0 Bet

a
9.1 Ratio

Insert 31,257 32,091 103% 31,356 32,095 102% 30,136 29,997 100%

Update 37,229 37,583 101% 40,359 39,672 98% 38,361 39,016 102%

Select 36,776 35,473 96% 35,648 35,542 100% 36,280 34,270 94%

Delete 32,470 32,531 100% 30,204 30,843 102% 30,700 30,422 99%

Total 137,732 137,678 100% 137,567 138,152 100% 135,477 133,705 99%

(Unit: TPS)

CUBRID 9.1 QA Completion Report

17

D. Windows: Performance Comparison between 9.0 Beta (32-bit) and 9.1 (32-bit)

According to the test result, we can say that there is no significant change of performance on Windows

32-bit OS.

Figure 7. Performance Comparison between 9.0 Beta and 9.1 (Windows 32-bit)

Table 11. Performance Comparison between 9.0 Beta and 9.1 (Windows 32-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 Ratio

Insert 39,119 38,928 100% 37,978 36,642 96% 37,153 35,775 96%

Update 42,173 42,544 101% 45,029 43,914 98% 44,509 43,765 98%

Select 39,681 39,826 100% 39,340 38,327 97% 39,390 37,814 96%

Delete 42,705 43,089 101% 41,610 40,713 98% 40,003 41,187 103%

Total 163,678 164,387 100% 16,3957 159,596 97% 161,055 158,541 98%

(Unit: TPS)

CUBRID 9.1 QA Completion Report

18

2.2.2 YCSB Performance Test

YCSB as a framework for benchmarking system is popular in the world (see also

https://github.com/brianfrankcooper/YCSB/wiki). This test was performed to verify CUBRID performance

of not only basic operations but also compositive operations, which are insert, select, scan, update and

the mix of them. For more information about test scenarios, see the appendix II. As shown in the results

below, the performance of SELECT operation has improved nearly 20%, and the performance of the

other operations is almost same as that of 9.0 Beta.

A. Master Server Configuration: Performance Comparison between 9.0 Beta (64-bit) and
9.1 (64-bit)

Table 12. Result of YCSB Benchmark (Master Server)

 Throughput(OPS)
Average

Latency(ms)

95thPercentile
Latency(ms)

Operations 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 9.0 Beta 9.1

Insert 15,883 15,854 100% 18 18 31 32

Select 28,697 34,086 119% 10 8 26 27

Scan 4,481 4,407 98% 60 61 244 245

Update 13,948 13,802 99% 20 21 18 17

Mix 14,233 14,274 100% N/A N/A N/A N/A

Figure 8. Result of Insert Operation of YCSB Benchmark (Master Server)

CUBRID 9.1 QA Completion Report

19

Figure 9. Result of Select Operation of YCSB Benchmark (Master Server)

Figure 10. Result of Scan Operation of YCSB Benchmark (Master Server)

CUBRID 9.1 QA Completion Report

20

Figure 11. Result of Update Operation of YCSB Benchmark (Master Server)

Figure 12. Result of Mix Operation of YCSB Benchmark (Master Server)

CUBRID 9.1 QA Completion Report

21

B. Slave Server Configuration: Performance Comparison between 9.0 Beta (64-bit) and
9.1 (64-bit)

Table 13. Result of YCSB Benchmark (Slave Server)

 Throughput(OPS)
Average

Latency(ms)

95thPercentile
Latency(ms)

Operations 9.0 Beta 9.1 Ratio 9.0 Beta 9.1 9.0 Beta 9.1

Insert 16,351 16,459 101% 18 18 34 33

Select 25,008 30,924 124% 11 10 28 28

Scan 4,321 4,248 98% 63 63 250 246

Update 14,392 14,488 101% 20 20 14 14

Mix 14,404 14,432 100% N/A N/A N/A N/A

Figure 13. Result of Insert Operation of YCSB Benchmark (Slave Server)

CUBRID 9.1 QA Completion Report

22

Figure 14. Result of Select Operation of YCSB Benchmark (Slave Server)

Figure 15. Result of Scan Operation of YCSB Benchmark (Slave Server)

CUBRID 9.1 QA Completion Report

23

Figure 16. Result of Update Operation of YCSB Benchmark (Slave Server)

Figure 17. Result of Mix Operation of YCSB Benchmark (Slave Server)

CUBRID 9.1 QA Completion Report

24

2.2.3 SysBench Performance Test

SysBench is a modular, cross-platform and multi-threaded benchmark tool for evaluating OS parameters

that are important for a system running a database under intensive load (see also

http://sysbench.sourceforge.net/). SysBench runs a specified number of threads and they all execute

requests in parallel. The actual workloads produced by requests depend on the specified test mode. You

can limit either the total number of requests or the total time for the benchmark, or both. Available test

modes are implemented by compiled-in modules, and SysBench was designed to make adding new test

modes an easy task. Each test mode may have additional (or workload-specific) options. For more

information about test scenarios, see the appendix II.

As shown in the results below, there is just small difference on the performance of SysBench between

9.0 Beta and 9.1.

A. SysBench performance comparison between 9.0 Beta (64-bit) and 9.1 (64-bit)

Figure 18. The number of read/write requests per second of SysBench benchmark

http://sysbench.sourceforge.net/

CUBRID 9.1 QA Completion Report

25

Figure 19. The average execution time per request of SysBench benchmark

Figure 20. The accumulated number of transactions of SysBench benchmark

CUBRID 9.1 QA Completion Report

26

Figure 21. The number of transactions per second of SysBench benchmark

CUBRID 9.1 QA Completion Report

27

2.2.4 NBD Benchmark Performance Test

This test was performed to verify CUBRID performance with the NBD Benchmark tool, which has been

developed to verify the performance of the general bulletin board application framework. The scalability

of the test DB was Level 1. The number of Page Views of 9.1 is almost same as that of 9.0 Beta.

A. NBD performance comparison between 9.0 Beta (64-bit) and 9.1 (64-bit)

Figure 22. NBD performance comparison (64-bit)

CUBRID 9.1 QA Completion Report

28

B. NBD performance comparison between 9.0 Beta (32-bit) and 9.1 (32-bit)

Figure 23. NBD performance comparison (32-bit)

The following graphs represent the usage rate of each resource while processing the NBD benchmark

test on Linux 64-bit.

Figure 24. CPU Usage for NBD Benchmark

CUBRID 9.1 QA Completion Report

29

Figure 25. Memory Usage for NBD Benchmark

Figure 26. Disks IO status for NBD Benchmark

CUBRID 9.1 QA Completion Report

30

2.2.5 Data Replication Test on HA

This test was performed to evaluate the performance of data replication under HA environment, by using

YCSB to execute Insert, Update and Delete operations on Master server with the related configurations,

and check the delay time of data replication on Slave by CUBRID SQL statement. For more details, please

refer to appendix II. As shown in the table below, the performance of data synchronization on 9.1 has

been significantly improved.

Table 14. Data replication performance comparison

 Version Delay Time (sec.)

9.0 Beta 2238.73

9.1 1.18

2.2.6 TPC-C Performance Test

TPC Benchmark C, approved in July of 1992, is an on-line transaction processing (OLTP) benchmark.

TPC-C (see also http://www.tpc.org/tpcc/) is more complex than previous OLTP benchmarks such as

TPC-A because of its multiple transaction types, more complex database and overall execution structure.

TPC-C involves a mix of five concurrent transactions of different types and complexity either executed

on-line or queued for deferred execution. The database is comprised of nine types of tables with a wide

range of record and population sizes. TPC-C is measured in transactions per minute (tpmC).

As shown in the results below, the performance of 9.1 on TPC-C is practically same as that of 9.0 Beta.

TPC-C performance comparison between 9.0 Beta (64-bit) and 9.1 (64-bit)

http://www.tpc.org/tpcc/

CUBRID 9.1 QA Completion Report

31

Figure 27. tpmC comparison of TPC-C benchmark

2.3 Stability Test Results

DOTS, a sub-project of an open project called "Linux Test Project", is an open test tool for testing the

DBMS. For more information about DOTS, see the appendix III. As shown in the test results below, the

system operated stably without any abnormalities during 65 hours. You can ignore the failures because

they are unique violations due to the modification of duplicated data.

Figure 28. The number of SUCCESS/FAIL Queries of DOTS Test

Figure 29. CPU Usage of DOTS Test

CUBRID 9.1 QA Completion Report

32

Figure 30. Memory Usage of DOTS Test

2.4 Live Service Simulation Test Result

Live Service Simulation Test is a QA test suite to simulate the real business environment based on

CUBRID database, which generates a lot of URLs according to the user id and the keywords users want

to search, and the Live Service clients execute queries on CUBRID database by URLs. TPS, CPU usage

and Memory usage have also been collected during the test to evaluate the performance and stability of

CUBRID.

Table 15. The check points of Live Service Simulation Test

check points

12 hours

No crash

No special error messages in server/broker log

No memory leak

Continuous service,

the total number of requests reaches around 2 billion

CUBRID 9.1 QA Completion Report

33

Figure 31. Transactions of Live Service Simulation Test

Figure 32. CPU Usage of Live Service Simulation Test

CUBRID 9.1 QA Completion Report

34

Figure 33. Disk I/O Usage of Live Service Simulation Test

CUBRID 9.1 QA Completion Report

35

Figure 34. Network Usage of Live Service Simulation Test

2.5 Compatibility Test Results

This test was performed to verify the JDBC and CCI compatibility between R4.1, R4.3, 9.0 Beta and 9.1.

SQL, MEDIUM and JDBC Unit Tests were executed to verify JDBC compatibility. Shell test cases for CCI

were executed to verify CCI compatibility.

Table 16. Scenario of JDBC Compatibility Tests

Test Category Scenario(Branch)

9.1 JDBC  9.0 Beta Server - SQL/MEDIUM (in 9.0 Beta)

- JDBC Test Suite (in 9.1)

9.1 JDBC  R4.3 Server - SQL/MEDIUM (in R4.3)

- JDBC Test Suite (in 9.1)

9.1 JDBC  R4.1 Server - SQL/MEDIUM (in R4.1)

- JDBC Test Suite (in 9.1)

9.0 Beta JDBC  9.1 Server - SQL/MEDIUM (in 9.1)

- JDBC Test Suite (in 9.0 Beta)

R4.3 JDBC  9.1 Server - SQL/MEDIUM (in 9.1)

- JDBC Test Suite (in R4.3)

R4.1 JDBC  9.1 Server - SQL/MEDIUM (in 9.1)

- JDBC Test Suite (in R4.1)

CUBRID 9.1 QA Completion Report

36

Table 17. Result of JDBC Compatibility Tests

Test Category # of Scenario

Files

of Scenario

Files passed

Pass Rate

9.1 JDBC  9.0 Beta Server 14,142 14,142 100%

9.1 JDBC  R4.3 Server 11,289 11,289 100%

9.1 JDBC  R4.1 Server 11,264 11,264 100%

9.0 Beta JDBC  9.1 Server 14,159 14,159 100%

R4.3 JDBC  9.1 Server 14,537 14,537 100%

R4.1 JDBC  9.1 Server 14,539 14,539 100%

Table 18. Scenario of CCI Compatibility Tests

Test Category Scenario(Branch)

9.1 CCI  9.0 Beta Server - SQL (in 9.0 Beta)

- CCI Shell (in 9.0 Beta)

9.1 CCI  R4.3 Server - CCI Shell (in R4.3)

9.1 CCI  R4.1 Server - CCI Shell (in R4.1)

9.0 Beta CCI  9.1 Server - SQL (in 9.1)

- CCI Shell (in 9.1)

R4.3 CCI  9.1 Server - CCI Shell (in 9.1)

R4.1 CCI  9.1 Server - CCI Shell (in 9.1)

Table 19. Result of CCI Compatibility Tests

Test Category # of Scenario

Files

of Scenario

Files passed

Pass Rate

9.1 CCI  9.0 Beta Server 11,943 11,943 100%

9.1 CCI  R4.3 Server 204 204 100%

9.1 CCI  R4.1 Server 204 204 100%

9.0 Beta CCI  9.1 Server 12,362 12,362 100%

R4.3 CCI  9.1 Server 12,362 12,362 100%

R4.1 CCI  9.1 Server 204 204 100%

2.6 Installation Test Results

Installation test was performed based on the following basic scenarios:

 Install and uninstall package

 Start and stop service/server/broker and manager

 Create and delete database

CUBRID 9.1 QA Completion Report

37

 Execute a simple query in csql

 Make locale

Table 20. Result of Installation Test

Package Type Test OS Result

RPM/SH/TAR.GZ Linux CentOS on 32-bit and 64-bit PASS

SH Ubuntu 11 on 64-bit

SULinux on 64-bit

Fedora 15 64-bit

PASS

EXE/ZIP Windows Server 2008/2003 on 32-bit and 64-bit PASS

EXE/ZIP Windows 7 on 32-bit and 64-bit

Windows XP on 32-bit

PASS

2.7 Other Test Results

The entire bug and issue fixes for 9.1 have been confirmed.

CUBRID 9.1 QA Completion Report

38

2.8 Quality Index

The standard quality index of 9.1 is listed below.

Table 21. Quality Index of 9.1

Quality Index
Name

Project

Quality
Standard

Approved

Quality
Index

during
Implementat
ion

Measurement Target

Coding Standards

Compliance Rate
100% 100%

Number of coding conventions observed in
a project

56

Number of coding conventions applied to
each team

56

Code Review

Execution Rate
100% 100%

Number of source code lines for which
code review is performed.

1,335,804 LOC

Total number of source code lines in the
changed files

1,335,804 LOC

QA Scenario

Code Coverage
76% 75.8%

Number of tested statements 213,437

Total number of statements 281,505

Fault Density
Detected by

Static Analysis

4

/KLOC

4.2

/KLOC

Number of faults detected by static
analysis (Level 1)

307

Number of faults detected by static
analysis (Level 2)

11

Number of faults detected by static
analysis (Level 3)

697

Number of faults detected by static
analysis (Level 4)

0

Total number of source code lines 938,642 LOC

Cyclomatic Code
Complexity

3.3% 3.03%

Number of modules whose complexity is
over 30

675

Total number of modules in a project 22,265

12% 16.05% Number of modules whose complexity is
over 10

3,574

Total number of modules in a project 22,265

CUBRID 9.1 QA Completion Report

39

3.Conclusions

CUBRID 9.1 QA Completion Report

40

As described in Chapter 1 and 2, all the test cases for functions have been regressed and the scenarios for

performance, stability, compatibility, installation and other tests have also been successfully executed
before the release of 9.1. The tests have been performed on Linux 32-bit, Linux 64-bit, Windows 32-bit

and Windows 64-bit environments. The related defects have been logged into the issue tracker.

Based on the results obtained from the basic performance test, we have found that the performance of

INSERT, DELETE, SELECT and UPDATE are almost same as that of 9.0 Beta.

For YCSB, the performance for SELECT operation has improved nearly 20%, and the performance of the
other operations has not shown significant changes. Meanwhile, according to the results of SysBench and
TPC-C tests, the performance results of 9.1 are almost same as that of 9.0 Beta.

For stability test with DOTS, according to the resource usage and logs within CUBRID, there are no notable
issues.

According to the result of data replication test on HA mode, the performance of data synchronization has
significantly improved from the previous versions.

From the result of compatibility test, we can reach the conclusion that JDBC and CCI of 9.1 is compatible

with 9.0 Beta server and R4.3 server. JDBC and CCI of 9.0 Beta and R4.3 are also compatible with 9.1
server except some known issues.

As a conclusion, CUBRID 9.1 is a very stable version and it meets the criteria of release.

CUBRID 9.1 QA Completion Report

41

Appendix

CUBRID 9.1 QA Completion Report

42

I. Functionality Test Scenarios

This test was performed to verify the basic DBMS functionalities using SQL statements. SQL statements stored in files have be

en executed to verify DBMS conformity. We executed the stored SQL statements in a JDBC-based application, and compared

the results to the stored reference file for verification. The scenario files included in the basic functionality test are stored in

the SQL and MEDIUM directories of the CUBRID QA tool.

 SQL Query Test

Total: 12,091

Case Name Path Description

object sql/_01_object
Performs functionality tests of objects supported by
CUBRID, and has the largest number of scenarios
(3,332 scenarios).

user_authorization sql/_02_user_authorization
Performs functionality tests of user and
authorization management.

object_oriented sql/_03_object_oriented
Performs tests for the object-oriented concept.
CUBRID is an object-relational database
management system (DBMS).

operator_function sql/_04_operator_function
Performs functionality tests of basic functions and

operators supported by CUBRID.

manipulation sql/_06_manipulation

Performs tests of the insert, update, delete, and
select statements, which are the most commonly
used SQL statements in DML. Basic statements,
subqueries and various join queries are tested.

misc sql/_07_misc
Performs functionality tests of DCL (Data Control
Language), including statistics update or other
functionalities.

javasp sql/_08_javasp
Performs functionality tests of Java stored
procedures.

64-bit sql/_09_64bit
Performs basic functionality test scenarios of the
bigint and datetime types

Connect_by sql/_10_connect_by Performs a test of the hierarchical query feature

Code coverage sql/_11_codecoverage
Performs a test of uncovered codes based on the
code coverage results.

Syntax Extension sql/_12_mysql_compatibility Performs a test of the syntax extension.

BTS issues sql/_13_issues
Performs a test of known issues, which comes
from issue management system.

MySQL compatibility sql/ _14_mysql_compatibility_2 Performs a unit test of the syntax extension 2.

FBO sql/ _15_fbo Performs a test of the FBO feature.

Index enhancement sql/ _16_index_enhancement Performs a unit test of the index enhancement.

SQL Extension sql/ _17_sql_extension2

Performs a test of the syntax extension 2. Include

s a test of syntax enhancements, system parame
ters, show statements, date/time functions, string
 functions, aggregate functions, other functions.

CUBRID 9.1 QA Completion Report

43

Index enhancement sql/ _18_index_enhancement_qa

Performs a test of the index enhancement. Includ
es a test of limit optimizing, using index clause
enhancement, descending index scan, covering in
dex, ordering index, optimizing group by clause,
Index scan with like predicate, next key locking,
etc.

MySQL compatibility
for NEWS service

sql/_22_news_service_mysql_compatibility
Performs a test of several functions, regular
expression and hint rewriting.

SQL Extension 3
Index Enhancement

Internationalization
(CUBRID 9.0 Beta u
nit test)

sql/_19_apricot

Performs a unit test of syntax extension 3, perfo
rmance and internationalization features. Includes
 multi-table UPDATE/DELETE, pseudo column, an
alytic functions, MERGE statements, ENUM type,
filtered index, function based index, index skip s
can, partition and collation.

SQL Extension 3

Index Enhancement
Internationalization
(CUBRID 9.0 Beta
QA scenario)

sql/_23_apricot_qa

Performs a test of syntax extension 3, performan
ce and internationalization features, Test of synta
x extension 3 includes multi-table UPDATE/DELET
E, pseudo column, analytic functions, MERGE sta
tements, ENUM type, and other functions, Test o
f performance includes filtered index, function ba
sed index, index skip scan and partition enhance
ment. Test of internationalization includes tests o
f 11 languages.

SQL Extension 3

Internationalization

(CUBRID 9.1 QA sc
enario)

sql/_24_aprium_qa

Performs a test of syntax extension,
internationalization features.

Test of syntax extension includes TRUNC, WIDTH
_BUCKEY, ROUND, NTILE functions, LEAD analyti
c function, and direct access to partitions in INS
ERT/UPDATE statements.

Test of internationalization includes collation per
table, SHOW COLLATION, COLLATE modifier appli
ed to expressions, etc.

 MEDIUM Query Test

Total: 970

Case Name Path Description

01_fixed medium/_01_fixed Performs regression test scenarios for bug fixes that have been
implemented since the initial version.

02_xtests medium /_02_xtests Performs test scenarios for functionalities supported by CUBRID,
but not by other DBMSs.

03_full_mdb medium /_03_full_mdb Performs test scenarios for sequential/index scan queries with an
index.

04_full medium /_04_full Performs test scenarios that include testing queries for limit values
of CUBRID.

05_err_x medium /_05_err_x Performs negative test scenarios for functionalities that are
supported by CUBRID, but not by other DBMSs.

06_fulltests medium /_06_fulltests Performs test scenarios for search queries with OIDs.

CUBRID 9.1 QA Completion Report

44

07_mc_dep medium /_07_mc_dep Includes a query that gives various conditions to a WHERE clause in
the SELECT query, and tests whether or not a correct result has
been selected.

08_mc_ind medium/_08_mc_ind Includes scenarios that test queries performing schema change.

 SITE Query Test

Total: 1,213

Case Name Path Description

k_count_q site/k_count_q Retrieves count (*) results of a query that is included in the kcc_q query.

k_merge_q site/k_merge_q Forces to give a hint to the kcc_q queries allowing merge joins.

k_q site/k_q

Performs tests for OID reference, collection type, and path expression
that are part of the object-oriented concept supported by CUBRID with
different scalabilities. In addition, it performs functionality tests while
increasing the number of join participating tables.

n_q site/n_q
Performs tests for a complex query in which subqueries, outer/inner
joins or group-by queries are combined, and checks whether correct
results are retrieved.

 Utility (Shell) Test

This test was performed to verify the basic DBMS functionalities using shell scripts. In particular, this test was also

performed to verify CUBRID utilities that cannot be tested by SQL statements. Scenarios of shell scripts are executed to

verify DBMS conformity.

Total: 1,439

Case Name Path Description

utility shell/_01_utility
Includes a script that tests the database management commands supported
by CUBRID.

sqlx_init shell/_02_sqlx_init
Includes scenarios that change the configuration of CUBRID DBMS
parameters, and checks whether they are working correctly.

itrack shell/_03_itrack
Includes scenarios that verify there is no regression by checking the bug fixes
in CUBRID, and stores scenarios that cannot be tested by SQL.

misc shell/_04_misc
Includes miscellaneous scenarios, such as index, query cache test, jdbc c
ache and async_commit.

addition Shell/_05_addition
Includes scenarios added to improve code coverage and mainly tests the
options of CUBRID utilities.

BTS issues shell/_06_issues
Includes scenarios that verify there is no regression by checking the bug fixes
in CUBRID, and stores scenarios that cannot be tested by SQL.

Index
enhancement

shell/_07_index_enhance
ment

Includes scenarios that verify next key lock and change the configuration of
CUBRID DBMS related to index enhancement, which has been added in
CUBRID 2008 R4.0 Beta.

64bit scenario shell/_09_64bit Includes file size on linux 64 bit

xa datasource shell/_21_xa Includes scenarios to cover xa DataSource features

MySQL service
compatibility

shell/_22_news_service_
mysql_compatibility

Includes scenarios of CUBRID compatibility with MySQL service

CUBRID 9.1 QA Completion Report

45

MySQL compatib
ility

shell/_23_mysql_compati
bility

Includes scenarios that verify syntax extension, which has been added in CUB
RID 2008 R3.1.

CUBRID 9.0 Be
ta QA

shell/_24_apricot
Includes scenarios that verify CUBRID 9.0 Beta functions such as i18n, e
num, etc.

unstable shell/_25_ unstable Includes scenarios that are not very stable

CUBRID 9.0 Bet
a QA

shell/_26_apricot_qa
Includes scenarios that added by QA to verify CUBRID 9.0 Beta functions
 such as i18n, cursor holdability, etc.

CUBRID 9.1 QA shell/_27_aprium_qa
Includes scenarios that added by QA to verify prefix key, enum, collation
 of CUBRID 9.1 i18n function.

manual shell Manually/*
All manual test cases which can’t be automated or need long time to reg
ress

 HA Feature Test

Total: 293

Case Name Path Description

Data replication test
execp/UsualCase

Includes scenarios that check whether HA replication is properly
performed in a normal state with no fault.

Node fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a node fault occurs during insert/update/delete
operations.

Process fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a process fault occurs that causes the database process
to stop during insert/update/delete operations.

Broker fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a broker fault occurs during insert/update/delete
operations.

Replication scenario scripts/sql Includes scenarios that test whether HA is working properly for each
CUBRID transaction type, and has two sub directories: random_case and
special_case

Bug regression HA/shell/ Includes scenarios that verify there is no regression by checking the HA
bug fixes in CUBRID

 HA Replication test

Total: 12,182

Case Name Path Description

Test Cases migrated
from SQL suite

N/A
Migrated existing SQL suite into HA environment. Execute them on m
aster node, then check whether be replicated to slave or not.

Bug Regression HA/shell/_24_fun
ctional_repl/

Includes scenarios that verify there is no regression by checking the HA
bug fixes in CUBRID

CUBRID 9.1 QA Completion Report

46

 CCI Interface test

Total: 250

Case Name Path Description

Features test Interface/shell/_2
0_cci

Which contains CCI all APIs, each APIs are mentioned in manual are
tested in shell scripts

Bug Regression Interface/shell/_2
0_cci/_12_issue

Includes shell scripts which are written when verify CCI bts issues

 JDBC Interface test

Total: 1,529

Case Name Path Description

Features test
N/A

Which include unit test for jdbc, jdbc spec 3.0 test, and other open
source databases jdbc case migration

 CAS4MySQL/Oracle test

Total: 64

Case Name Path Description

CAS4MySQL N/A Cas4MySQL test and CAS4MySQL bts issues automation scripts

CAS4Oracle N/A Cas4Oracle test and Cas4Oracle bts issues automation scripts

CUBRID 9.1 QA Completion Report

47

II. Performance Test Scenarios

 CUBRID Basic Performance Test

To evaluate the basic performance of DBMS, the following 5 variables were used. Database Server,

Broker, and Load Generator were run on a single server.

 Number of data (or number of program loops)

 Total number of data: 900,000 items

 Number of program loops: 100,000 loops/program (900,000 items)

 COMMIT Interval

- After every execution

- After 100 executions

- After 1,000 executions

 Number of concurrent users

- 5 users

- 10 users

 Number of index attributes

- create index idx1 on xoo(a)

- create index idx2 on xoo(a,b)

- create index idx3 on xoo(a,b,e)

 Interface

- JDBC (Dynamic SQL): Prepared statements were used.

 Test data

 Test schema

CREATE TABLE xoo (
 a int,
 b int,
 c int,
 d int,
 e char(10),
 f char(20),
 g char(30)
)

CREATE INDEX idx1 on xoo(a);
CREATE INDEX idx2 on xoo(a,b);
CREATE INDEX idx3 on xoo(a,b,e);

CUBRID 9.1 QA Completion Report

48

 Test data

Enter data from 1 to 450,000; total number of data is 900,000.

 How to perform a test

 Insert/update/select/delete data from a specific number.

 For concurrent user tests, the start and end numbers are defined to prevent data from overlapping,

in order to ensure that there is no competition between the concurrent clients.

 For concurrent user test programs, a JDBC test program is tested with a multi-threaded program,

and a C program is tested with a multi-process program.

 If the number of loops is 10,000, a user repeats execution 10,000 times in the case of the 1-user

test, and each user repeats execution 2,000 times in the case of the 5-user test. Similarly, if the

number of loops is 100,000, a user repeats execution 100,000 times in the case of the 1-user test,

and each user repeats execution 20,000 times in the case of the 5-user test.

 How to measure test results

 Measure the number of loops per second.

 For concurrent user tests, add the execution times of all users.

 YCSB Benchmark

This test was performed to verify CUBRID performance of not only basic operations but also compositive

operations, which are insert, select, scan, update and mix of them.

 Common Test Environment

 Test Servers

 CUBRID database volume configuration

cubrid createdb ycsb

cubrid addvoldb -p data --db-volume-size=2G ycsb -S

cubrid addvoldb -p data --db-volume-size=2G ycsb -S

CUBRID Server

IP: 10.34.64.55
CentOS 5.6(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ GHz *1 (12 core)
Memory: 24G

YCSB

IP: 10.34.64.56
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.4GHz *1 (12
core)
Memory: 24G
java version "1.6.0_25"

CUBRID Broker

IP: 10.34.64.54
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz *1 (12
core)
Memory: 24G

CUBRID 9.1 QA Completion Report

49

cubrid addvoldb -p index --db-volume-size=2G ycsb -S

cubrid addvoldb -p index --db-volume-size=2G ycsb -S
cubrid addvoldb -p temp --db-volume-size=2G ycsb –S

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON
BROKER_PORT =33000

MIN_NUM_APPL_SERVER =5
MAX_NUM_APPL_SERVER =300

APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log
ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =OFF
TIME_TO_KILL =120

SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO
CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=4G
sort_buffer_size=2M

cubrid_port_id=1523
max_clients=500

db_volume_size=512M

log_volume_size=512M

 Workload configuration on YCSB

 Insert operation (load)

recordcount=10000000

operationcount=10000000
workload=com.yahoo.ycsb.workloads.CoreWorkload

readallfields=true

readproportion=0
updateproportion=0

scanproportion=0
insertproportion=1

requestdistribution=zipfian
threads=300

fieldlength=10

 Select operation

recordcount=10000000
operationcount=10000000

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=1

CUBRID 9.1 QA Completion Report

50

updateproportion=0

scanproportion=0
insertproportion=0

requestdistribution=zipfian
threads=300

fieldlength=10
table=usertable

 Scan operation

recordcount=10000000

operationcount=10000000
workload=com.yahoo.ycsb.workloads.CoreWorkload

readallfields=true
readproportion=0

updateproportion=0

scanproportion=1
insertproportion=0

requestdistribution=zipfian
fieldlength=10

table=usertable
maxscanlength=200

threads=300

 Update operation

recordcount=10000000
operationcount=10000000

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=0

updateproportion=1
scanproportion=0

insertproportion=0
requestdistribution=zipfian

fieldlength=10
table=usertable

threads=300

 Mix operation

recordcount=10000000
operationcount=10000000

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=0.3

updateproportion=0.3
scanproportion=0.1

insertproportion=0.3
requestdistribution=zipfian

fieldlength=10

table=usertable
maxscanlength=200

CUBRID 9.1 QA Completion Report

51

threads=300

 Test schema

Create table usertable (
userkey CHARACTER VARYING(100) PRIMARY KEY,
field1 CHARACTER VARYING(100),
field2 CHARACTER VARYING(100),
field3 CHARACTER VARYING(100),
field4 CHARACTER VARYING(100),
field5 CHARACTER VARYING(100),
field6 CHARACTER VARYING(100),
field7 CHARACTER VARYING(100),
field8 CHARACTER VARYING(100),
field9 CHARACTER VARYING(100),
field10 CHARACTER VARYING(100)
)

 Test data on master server configuration

 CUBRID server configuration

 async_commit=no

 group_commit_interval_in_msecs=0

 Test data on slave server configuration

 CUBRID server configuration

 async_commit=yes

 group_commit_interval_in_msecs=1000

 Statements to be tested

 Insert operation

INSERT INTO usertable(userkey, field1, field2, field3, field4, field5, field6, field7, field8, field9, field10)
VALUES (?, ?, ?, ?, ?, ?,?, ?, ?, ?, ?);

 Select operation

SELECT * FROM usertable WHERE userkey= ?;

 Scan operation

SELECT * FROM usertable WHERE userkey>= ?LIMIT ?;

 Update operation

UPDATE usertable set field1=?, field2=?, field3=?, field4=?, field5=?, field6=?, field7=?, field8=?, field9=?, field10=? WHERE

CUBRID 9.1 QA Completion Report

52

userkey = ?;

 Mix operation

 Select operation: 30%

 Update operation: 30%

 Scan operation: 10%

 Insert operation: 30%

 SysBench Benchmark

This test was performed to verify CUBRID performance based on OLTP business.

 Test Environment

 Test Servers

 CUBRID database volume configuration

cubrid createdb sysbench

cubrid addvoldb -p data --db-volume-size=2G sysbench -S
cubrid addvoldb -p data --db-volume-size=2G sysbench -S

cubrid addvoldb -p index --db-volume-size=2G sysbench -S
cubrid addvoldb -p temp --db-volume-size=2G sysbench -S

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON

BROKER_PORT =33000
MIN_NUM_APPL_SERVER =350

MAX_NUM_APPL_SERVER =350
APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log
SQL_LOG =OFF

TIME_TO_KILL =120
SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO

CUBRID Server

IP: 10.34.64.51
CentOS 5.6(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ GHz *1 (12 core)
Memory: 32G

SysBench

IP: 10.34.64.50
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.4GHz *1 (12
core)
Memory: 32G
java version "1.6.0_18"

CUBRID Broker

IP: 10.34.64.52
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz *1 (12
core)
Memory: 32G

CUBRID 9.1 QA Completion Report

53

CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=4G
log_buffer_size=4M

sort_buffer_size=2M
max_clients=500

cubrid_port_id=1523
db_volume_size=512M

log_volume_size=512M

async_commit=no
group_commit_interval_in_msecs=0

 Test schema

create table sbtest(

id INTEGER AUTO_INCREMENT PRIMARY KEY,
k INTEGER DEFAULT 0 NOT NULL,
c CHAR(120) NOT NULL DEFAULT '',
pad CHAR(60) NOT NULL DEFAULT '',

)

 Configuration to start SysBench

./sysbench --test=oltp \
 --db-driver=cubrid \
 --cubrid-host=10.34.64.52 \
 --cubrid-port=33000 \
 --cubrid-db=sysbench \
 --num-threads=300 \
 --max-requests=0 \
 --max-time=14400 \
 --oltp-skip-trx=off \
 --oltp-read-only=off \
 --oltp-table-size=1000000 \
run

 NBD Benchmark

This test was performed to verify CUBRID performance using the NBD Benchmark tool, which has been

developed to verify the performance of the general bulletin board application framework. For more

information about NBD Benchmark, see separate documents.

 Data Replication Test on HA

This test was performed to e

valuate the performance of data replication on HA environment, by using YCSB to execute Insert, Update and Delete operati

ons on Master server with the related configurations, and check the delay time of data replication on Slave by CUBRID SQL st

atement.

CUBRID 9.1 QA Completion Report

54

 Test Servers

 Table scheme

csql> ;sc usertable
=== <Help: Schema of a Class> ===

 <Class Name>

 usertable
 <Attributes>

 userkey CHARACTER VARYING(100) NOT NULL
 field1 CHARACTER VARYING(100)

 field2 CHARACTER VARYING(100)

 field3 CHARACTER VARYING(100)
 field4 CHARACTER VARYING(100)

 field5 CHARACTER VARYING(100)
 field6 CHARACTER VARYING(100)

 field7 CHARACTER VARYING(100)
 field8 CHARACTER VARYING(100)

 field9 CHARACTER VARYING(100)

 field10 CHARACTER VARYING(100)
 <Constraints>

 PRIMARY KEY pk_usertable_userkey ON usertable (userkey)

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON

BROKER_PORT =33000

MIN_NUM_APPL_SERVER =5
MAX_NUM_APPL_SERVER =200

APPL_SERVER_SHM_ID =33000
LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log
SQL_LOG =OFF

TIME_TO_KILL =120

SESSION_TIMEOUT =300
KEEP_CONNECTION =AUTO

CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=5G

max_clients=100

ha_copy_sync_mode=sync:sync

Master Server

IP: 10.99.116.62
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27GHz *1 (12
core)
Memory: 48G
java version "1.6.0_18"

Slave Server

IP: 10.99.116.63
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27GHz *1 (12
core)
Memory: 48G

CUBRID 9.1 QA Completion Report

55

 YCSB configurations

recordcount=20000000

operationcount=10000000
insertproportion=0.6/updateproportion=0.3/deleteproportion=0.1

threads=50

 TPC-C Benchmark

BenchmarkSQL is a implementation of TPC-C standard. We can get more information in website

http://sourceforge.net/projects/benchmarksql/. For this performance test, we just use this

BenchmarkSQL tool to execute on CUBRID. In order to support CUBRID very well, we made

some corrections.

 Test Environment

 Test Servers

 CUBRID database volume configuration

cubrid createdb tpcdb10

cubrid addvoldb -p data --db-volume-size=2G tpcdb10 -S
cubrid addvoldb -p data --db-volume-size=2G tpcdb10- S

cubrid addvoldb -p index --db-volume-size=2G tpcdb10 -S
cubrid addvoldb -p temp --db-volume-size=2G tpcdb10 -S

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON

BROKER_PORT =33000
MIN_NUM_APPL_SERVER =5

MAX_NUM_APPL_SERVER =200
APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log
ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =OFF

TIME_TO_KILL =120
SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO
CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=4G

max_clients=300

BenchmarkSQL

IP: 10.99.116.61
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27GHz *1 (12
core)
Memory: 48G
java version "1.6.0_18"

CUBRID Broker/Server

IP: 10.99.116.63
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27GHz *1 (12
core)
Memory: 48G

http://sourceforge.net/projects/benchmarksql/

CUBRID 9.1 QA Completion Report

56

 BenchmarkSQL configuration

Number of warehouses: 10

Number of Terminals: 100
Execute minutes: 30

Payment : 43%, Order-Status: 4%, Delivery: 4% , Stock-Level: 4% ,New-Order:45%

III. Stability Test Scenarios

DOTS, a sub-project of an open project called "Linux Test Project", is an open test tool for testing the DBMS.

 Test Related Schema (the Number of Data in Each Table)

CREATE TABLE REGISTRY (
 USERID CHAR(15) NOT NULL PRIMARY KEY,
 PASSWD CHAR(10),
 ADDRESS CHAR(200),
 EMAIL CHAR(40),
 PHONE CHAR(15)
);

CREATE TABLE ITEM (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 SELLERID CHAR(15) NOT NULL,
 DESCRIPTION VARCHAR(250) ,
 BID_PRICE FLOAT,
 START_TIME DATE,
 END_TIME DATE,
 BID_COUNT INTEGER
);

CREATE TABLE BID (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 BIDERID CHAR(15) NOT NULL,
 BID_PRICE FLOAT,
 BID_TIME DATE
);

 CUBRID configuration

 cubrid_broker.conf

MIN_NUM_APPL_SERVER=20
MAX_NUM_APPL_SERVER=100
APPL_SERVER_MAX_SIZE=100

 cubrid.conf

log_max_archives=150
async_commit=yes
group_commit_interval_in_msecs=10
checkpoint_every_npages=100000
checkpoint_interval_in_mins=10
max_clients=200
data_buffer_size=1G

 DOTs configuration

DURATION=24:00
CONCURRENT_CONNECTIONS= 20

CUBRID 9.1 QA Completion Report

57

AUTO_MODE = no
SUMMARY_INTERVAL = 5
MAX_ROWS= 900000000

 Data Size and How to Create Data

The initial number of data when starting the test is 0. Enter 1000 of data in the REGISTRY table. Next,

enter 100 of data in the ITEM table as well as in the bid table. Then, update 100 times.

 Transaction types

 INSERT transaction 1

INSERT INTO ITEM (ITEMID,SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT)
VALUES (?, ?, ? ,?, ?, ?, ?)

 INSERT transaction 2

INSERT INTO BID (ITEMID,BIDERID,BID_PRICE,BID_TIME)
VALUES (?, ?, ?, ?)

 SELECT transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID = ?

 SELECT transaction 2

SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?
SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?

 UPDATE transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID =
UPDATE ITEM SET DESCRIPTION = ?,BID_PRICE = ?,START_TIME = ?,END_TIME = ? WHERE ITEMID = ?

 How to Generate Load

 How to generate load

Use two threads to generate the initial load. Each thread repeats the insert/select/update queries

mentioned above. The DOTS program checks CPU usage every 5 minutes. If the Peak CPU usage does

not exceed 100%, the test continues, by adding two more threads.

CUBRID 9.1 QA Completion Report

58

IV. Live Service Simulation Test Scenarios

Live Service Simulation Test is a new test suite developed by CUBRID QA. It is based on a real business

application (simply called WB Service) and simulated workloads. WB Service is a web based application. It is

powered by Apache Tomcat web server.

 Test Environment

 Test Servers

CUBRID Broker

IP: 10.34.64.50
CentOS 5.6(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ GHz (12 core)
Memory: 32G

Apache Tomcat 6.0.35 (10 instances)

IP: 10.34.64.55
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz (12 core)
Memory: 24G
java version "1.6.0_29"

Apache Tomcat 6.0.35 (10 instances)

IP: 10.34.64.56
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz (12 core)
Memory: 24G
java version "1.6.0_29"

nGrinder v2.2 (Controller and Agent)

Agents: 1 Processes: 10 Threads: 100 Duration: 12 hours
Vusers: 1000

IP: 10.34.64.58
CentOS 5.3 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz (12 core)
Memory: 32G
java version "1.6.0_29"

CUBRID Server

IP: 10.34.64.49
CentOS 5.6(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ GHz (12 core)
Memory: 32G

CUBRID 9.1 QA Completion Report

59

Note: In order to increase stress on CUBRID, we adopted 20 Tomcat instances. It also can be reached by

performance tuning on Tomcat.

CUBRID 9.1 QA Completion Report

60

 How to generate requests

WB Service uses an existing database. There are 34 tables and total 717,297,489 records existed before

testing. In order to simulate workloads similar to effective user accesses, we generated totally 405,560,054

effective URLs according to the existing database data. So the testing will cover all the requests for the whole

database data. WB Service supports user login and customization. It requires user authentication, but for the

purpose of testing, we made some cracks to support automatic login according to a parameter in URL.

After getting URLs, we then split the whole URLs into 1000 sub collections. Each collection data is saved as

one URLs’ file. During the test, each URLs’ file serves one v-user.

 CUBRID configuration

 cubrid_broker.conf

[%BROKER1]
SERVICE =ON
BROKER_PORT =33000
MIN_NUM_APPL_SERVER =500
MAX_NUM_APPL_SERVER =1000
APPL_SERVER_SHM_ID =33000
LOG_DIR =log/broker/sql_log
ERROR_LOG_DIR =log/broker/error_log
SQL_LOG =OFF
SLOW_LOG =OFF
TIME_TO_KILL =120
SESSION_TIMEOUT =300
KEEP_CONNECTION =AUTO
CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf

[%BROKER1]
data_buffer_size=4G
log_buffer_size=4M
sort_buffer_size=2M
max_clients=1000

 Connection Pool in one Tomcat instance

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <properties>
 <property>
 <driverClassName>cubrid.jdbc.driver.CUBRIDDriver</driverClassName>
 <url>jdbc:cubrid:**.**.**.**:33000:wordbook:dba::?charset=UTF-8</url>
 <username>********</username>
 <password>********</password>
 <maxWait>6000000</maxWait>
 <initialSize>20</initialSize>
 <maxActive>100</maxActive>
 <maxIdle>5</maxIdle>
 <minIdle>5</minIdle>
 <Encrypt>false</Encrypt>
 <useManagedObject>false</useManagedObject>
 <UseStatementCache>true</UseStatementCache>
 <StatementCacheSize>10</StatementCacheSize>
 <UseCallableStatementCache>true</UseCallableStatementCache>
 <UseConnectionWatcher>false</UseConnectionWatcher>
 <UseLogger>false</UseLogger>
 <SlowQueryTime>9999999</SlowQueryTime>

CUBRID 9.1 QA Completion Report

61

 <QueryTimeout>9999999</QueryTimeout>
 <validationQuery>select 1 from db_root</validationQuery>
 <testOnBorrow>false</testOnBorrow>
 <testWhileIdle>true</testWhileIdle>
 <timeBetweenEvictionRunsMillis>30000</timeBetweenEvictionRunsMillis>
 <LogAbandoned>true</LogAbandoned>
 <RemoveAbandoned>true</RemoveAbandoned>
 <RemoveAbandonedTimeout>50000</RemoveAbandonedTimeout>
 <poolPreparedStatements>false</poolPreparedStatements>
 <maxOpenPreparedStatements>20</maxOpenPreparedStatements>
 </property>
 </properties>
</configuration>

 Configuration in nGrinder

Agents: 1
Processes: 10
Threads: 100
V-users: 1000
Duration: 12 hours

Each v-user will access its URLs’ file in WB_DATA directory. Once the URLs’ file reaches the end line, it will

go back to the head and continue executing.

from net.grinder.script.Grinder import grinder
from net.grinder.script import Test
from net.grinder.plugin.http import HTTPRequest

wordbook_test = Test(1, "CUBRID arpium Test")
request_00 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19500"))
request_01 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19501"))
request_02 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19502"))
request_03 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19503"))
request_04 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19504"))
request_05 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19505"))
request_06 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19506"))
request_07 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19507"))
request_08 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19508"))
request_09 = wordbook_test.wrap(HTTPRequest(url="http://tomcat55:19509"))

request_10 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19500"))
request_11 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19501"))
request_12 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19502"))
request_13 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19503"))
request_14 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19504"))
request_15 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19505"))
request_16 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19506"))
request_17 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19507"))
request_18 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19508"))
request_19 = wordbook_test.wrap(HTTPRequest(url="http://tomcat56:19509"))

requests = [request_00, request_01, request_02, request_03, request_04, request_05, request_06, request_07, request_08, req
uest_09,request_10, request_11, request_12, request_13, request_14, request_15, request_16, request_17, request_18, request
_19]

total_process=10

class TestRunner:
 def __init__(self) :
 self.filename = "/home/wordbook_ngrinder/WB_DATA/WB_A" + str(grinder.processNumber%total_process+1).zfill(2) + "/
W" + str(grinder.threadNumber+1).zfill(3) + ".txt"

 self.index = grinder.threadNumber
 self.testfile = open (self.filename, "r")

 def __call__(self) :

CUBRID 9.1 QA Completion Report

62

 line = self.testfile.readline()
 if line is None :
 self.testfile = open (self.filename, "r")
 curIndex = self.index % 20
 requests[curIndex].GET(line)
 self.index = self.index+1
 def __del__(self):
 self.testfile.close()

V. Scenario-based Code Coverage Results

VI. JDBC Code Coverage Results

