

This document is the verification report of CUBRID 9.2 in terms of functionality, performance and stability.

CUBRID 9.2 QA Completion
Report

CUBRID 9.2 QA Completion Report

2

Table of Contents

CUBRID 9.2 QA Completion Report ___ 1

1. Test Overview __ 4

1.1 Test Objectives __ 5

1.2 Test Environment ___ 5

1.2.1 TEST PROCEDURES ___ 5

1.2.2 HARDWARE TEST ENVIRONMENT __ 8

1.3 Test Category ___ 9

2. Test Results __ 10

2.1 Functionality Test Results ___ 11

2.1.1 BASIC QUERY TESTS ___ 11

2.1.2 BASIC UTILITY AND OTHER SCENARIO TESTS __ 11

2.1.3 HA FEATURE TESTS __ 11

2.1.4 HA REPLICATION TESTS __ 12

2.1.5 CCI INTERFACE TESTS ___ 12

2.1.6 JDBC INTERFACE TESTS __ 12

2.1.7 CAS4MYSQL/ORACLE TESTS ___ 13

2.2 Performance Test Results ___ 14

2.2.1 CUBRID BASIC PERFORMANCE TEST __ 14

2.2.2 YCSB PERFORMANCE TEST___ 18

2.2.3 SYSBENCH PERFORMANCE TEST __ 23

2.2.4 NBD BENCHMARK PERFORMANCE TEST__ 24

2.2.5 TPC-C PERFORMANCE TEST __ 28

2.2.6 DATA REPLICATION TEST ON HA ___ 28

2.3 Stability Test Results __ 29

2.4 Compatibility Test Results ___ 30

CUBRID 9.2 QA Completion Report

3

2.5 Installation Test Results ___ 31

2.6 Other Test Results __ 32

2.7 Quality Index __ 33

3. Conclusions __ 34

Appendix __ 36

I. Functionality Test Scenarios ___ 37

II. Performance Test Scenarios ___ 42

III. Stability Test Scenarios __ 52

IV. Scenario-based Code Coverage Results ___ 54

V. JDBC Code Coverage Results ___ 54

1.Test Overview

CUBRID 9.2 QA Completion Report

5

1.1 Test Objectives

The objectives of this test are to perform functionality, performance and stability tests for the final

release candidate build of CUBRID 9.2 (hereinafter referred to as 9.2), which is under development for

release in September 2013, in order to determine the product release afterwards based on the test

results. To guarantee the stability of CUBRID testing, we have used the test environments configured as

below, which could also be adopted as a reference for the further testing. Based on the function results

and the comparisons between the performance test results of CUBRID 9.2 and those of CUBRID 9.1

(hereinafter referred to as 9.1), we could verify whether the performance of 9.2 has been improved or

not.

 CentOS 5.6 (32/64-bit) or compatible

 CentOS 5.3 (32/64-bit) or compatible

 CentOS 4.7 (32/64-bit) or compatible

 Windows 2003 (32/64-bit) or compatible

 Final test build: 9.2.0.0155 (Linux 64-bit/32-bit, Windows 64-bit/32-bit)

1.2 Test Environment

1.2.1 Test Procedures

Test procedures we have used to verify the CUBRID product are shown below. The actual test sequence

used may be different from the one described here. To verify the product stability, functionality,

performance and other tests were performed for 4 types of builds as shown in the figure below. The

details of each test suite are described in the appendix of this report.

CUBRID 9.2 QA Completion Report

6

Figure 1. CUBRID Test Procedure

Figure 2. System Diagram for Basic Test

CUBRID 9.2 QA Completion Report

7

Figure 3. System Diagram for HA Test

CUBRID 9.2 QA Completion Report

8

1.2.2 Hardware Test Environment

Servers for the CUBRID test and their usage are listed in the table below.

Name OS CPU MEMORY DISK

Host 1 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 2 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 3 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 4 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 32 GB SAS 600G * 3 (Raid5)

Host 5 Cent OS 5.6 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 32 GB SAS 600G * 3 (Raid5)

Host 6 Cent OS 5.6 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 32 GB SAS 600G * 3 (Raid5)

Host 7 Cent OS 5.6 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 24 GB SAS 600G * 3 (Raid5)

Host 8 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 cores) * 1 32 GB SAS 600G * 3 (Raid5)

Host 9 Windows 2003 (64-bit) Xeon 2.33 GHz (quad cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 10 Windows 2003 (32-bit) Xeon 2.0 GHz (quad cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 11 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 12 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 cores) * 2 8 GB SATA 500G * 2 (No Raid)

Host 13 Cent OS 6.3 (64-bit) Xeon 2.27 GHz (12 cores) * 1 48 GB SAS 300G * 6 (Raid1+0)

Host 14 Cent OS 6.3 (64-bit) Xeon 2.27 GHz (12 cores) * 1 48 GB SAS 300G * 6 (Raid1+0)

Host 15 Cent OS 6.3 (64-bit) Xeon 2.27 GHz (12 cores) * 1 48 GB SAS 300G * 6 (Raid1+0)

CUBRID 9.2 QA Completion Report

9

1.3 Test Category

The following tests have been performed to determine whether 9.2 meets the criteria of release. The

details of each test are described in the appendix of this report.

 Functionality tests

 SQL query test

 MEDIUM query test

 SITE query test

 Utility (Shell) test

 HA Feature test

 HA Replication test

 CCI Interface test

 JDBC Interface test

 CAS4MySQL/Oracle

 Performance tests

 Basic Performance Test

 YCSB Benchmark

 SysBench

 NBD Benchmark

 TPC-C

 Data Replication Test on HA

 Stability tests

 DOTS stress test

 TPC-W on HA test

 Compatibility tests

 JDBC compatibility test

 CCI compatibility test

 Installation tests

 Other tests

 Test for checking 9.2 functionalities/bug fixes

 Memory check (SQL/MEDIUM) by Valgrind

CUBRID 9.2 QA Completion Report

10

2.Test Results

CUBRID 9.2 QA Completion Report

11

2.1 Functionality Test Results

2.1.1 Basic Query Tests

This test has been performed to verify the basic DBMS functionalities by using SQL statements. SQL

statements stored in 14,557 files have been executed to verify DBMS conformity. We have executed all

the stored SQL statements in both JDBC-based and CCI-based applications on the release build and the

debug build, and then compared the results with the stored reference files for verification.

Table 1. Result of Basic Query Tests

Test Category Number of Scenario
Files

Number of Scenario Files
passed

Pass Rate

SQL query test

(JDBC and CCI)
12,374 12,374 100%

MEDIUM query test 970 970 100%

SITE query test 1,213 1,213 100%

2.1.2 Basic Utility and Other Scenario Tests

This test has been performed to verify the basic DBMS functionalities by using shell scripts. In particular,

this test was also performed to verify CUBRID utilities that could not be tested by SQL statements. 1,754

scenarios tested by shell scripts have been executed to verify DBMS conformity.

Table 2. Result of Basic Utility and Other Scenario Tests

Test Category Number of Scenario Files Number of Scenario Files
passed

Pass Rate

Utility 226 226 100%

Bug regression 955 955 100%

Environment variable 7 7 100%

Other 566 566 100%

2.1.3 HA Feature Tests

179 scenarios tested by shell scripts have been executed to verify HA features and the regressions.

CUBRID 9.2 QA Completion Report

12

Table 3. Result of HA Feature Tests

Test Category Number of Scenario
Files

Number of Scenario
Files passed

Pass Rate

Bug regression 171 171 100%

Fault test 8 8 100%

2.1.4 HA Replication Tests

HA Replication Test is a new QA tool which runs SQL test cases on HA Master, and verifies the data

consistency between Master and Slave. 12,423 scenarios based on SQL files have been executed to verify

the data consistency between Master and Slave.

Table 4. Result of HA Replication Tests

Test Category Number of Scenario
Files

Number of Scenario
Files passed

Pass Rate

Test Cases migrated from
SQL suite

12,360 12,360 100%

Bug regression 63 63 100%

2.1.5 CCI Interface Tests

CCI Interface Test aims to verify if all the CCI APIs of CUBRID work well as described in the CUBRID

manual. 254 scenarios based on shell scripts have been executed on the release build and the debug

build to verify all the CCI APIs basic features and the BTS issue regressions.

Table 5. Result of CCI Interface Tests

Test Category Number of Scenario
Files

Number of Scenario
Files passed

Pass Rate

Basic features 202 202 100%

Bug regression 52 43 100%

2.1.6 JDBC Interface Tests

1,530 scenarios tested by java jUnit have been executed to verify all the JDBC API features and the BTS

issue regressions.

CUBRID 9.2 QA Completion Report

13

Table 6. Result of JDBC Interface Tests

Test Category Number of Scenario
Files

Number of Scenario
Files passed

Pass Rate

Features test 1,530 1,530 100%

2.1.7 CAS4MySQL/Oracle Tests

108 scenarios tested by shell scripts have been executed to verify the features of CAS4MySQL and

CAS4Oracle respectively.

Table 7. Result of CAS4MySQL/Oracle Tests

Test Category Number of Scenario
Files

Number of Scenario
Files passed

Pass Rate

CAS4MySQL 54 54 100%

CAS4Oracle 54 54 100%

CUBRID 9.2 QA Completion Report

14

2.2 Performance Test Results

2.2.1 CUBRID Basic Performance Test

This test has been performed to check the performance of the CUBRID DBMS basic operations, which are

select, insert, update and delete. For more information about the test scenarios, see the appendix II. All

the default configuration values are adopted except SQL_LOG=OFF in cubrid_broker.conf. As shown in

the table below, we can see that the performances of INSERT, UPDATE, SELECT and DELETE on 4

platforms(Linux 32, 64bit and Windows 32, 64bit) are same as 9.1.

A. Linux: Performance Comparison between 9.1 (64-bit) and 9.2 (64-bit)

Figure 4. Performance Comparison between 9.1 and 9.2 (Linux 64-bit)

CUBRID 9.2 QA Completion Report

15

Table 8. Performance Comparison between 9.1 and 9.2 (Linux 64-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.1 9.2 Ratio 9.1 9.2 Ratio 9.1 9.2 Ratio

Insert 65,827 65,048 99% 66,454 66,263 100% 66,422 65,421 98%

Update 81,302 80,014 98% 79,095 79,626 101% 77,712 78,886 102%

Select 83,515 83,629 100% 80,969 80,370 99% 81,498 80,502 99%

Delete 69,072 69,078 100% 65,521 66,383 101% 64,150 65,411 102%

Total 299,716 297,769 99% 292,039 292,642 100% 289,782 290,220 100%

(Unit: TPS)

B. Linux: Performance Comparison between 9.1 (32-bit) and 9.2 (32-bit)

Figure 5. Performance Comparison between 9.1 and 9.2 (Linux 32-bit)

Table 9. Performance Comparison between 9.1 and 9.2 (Linux 32-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.1 9.2 Ratio 9.1 9.2 Ratio 9.1 9.2 Ratio

Insert 60,263 59,422 99% 61,200 60,373 99% 60,099 60,594 101%

Update 75,208 75,055 100% 72,224 75,467 104% 72,105 72,496 101%

Select 78,496 77,809 99% 75,993 76,695 101% 76,582 77,127 101%

Delete 64,328 64,509 100% 60,118 61,241 102% 59,640 60,838 102%

Total 278,295 276,795 99% 269,535 273,776 102% 268,426 271,055 101%

(Unit: TPS)

C. Windows: Performance Comparison between 9.1 (64-bit) and 9.2 (64-bit)

According to the test result below, we can see that the performance of some operations has a little drop,

that is normal fluctuation.

CUBRID 9.2 QA Completion Report

16

Figure 6. Performance Comparison between 9.1 and 9.2 (Windows 64-bit)

Table 10. Performance Comparison between 9.1 and 9.2 (Windows 64-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.1 9.2 Ratio 9.1 9.2 Ratio 9.1 9.2 Ratio

Insert 34,047 32,715 96% 32,322 34,409 106% 30,073 33,079 110%

Update 39,893 38,951 98% 40,723 45,490 112% 39,079 41,051 105%

Select 37,670 36,256 96% 38,594 36,897 96% 36,661 35,363 96%

Delete 33,910 37,421 110% 30,703 35,813 117% 31,685 31,963 101%

Total 145,520 145,343 100% 142,342 152,609 107% 137,498 141,456 103%

(Unit: TPS)

CUBRID 9.2 QA Completion Report

17

D. Windows: Performance Comparison between 9.1 (32-bit) and 9.2 (32-bit)

According to the test result below , we can see that there is no performance change based on Windows

32-bit OS testing.

Figure 7. Performance Comparison between 9.1 and 9.2 (Windows 32-bit)

Table 11. Performance Comparison between 9.1 and 9.2 (Windows 32-bit)

 idx(a) idx(a,b) idx(a,b,c)

 9.1 9.2 Ratio 9.1 9.2 Ratio 9.1 9.2 Ratio

Insert 37,857 38,529 102% 36,609 37,896 104% 36,302 37,987 105%

Update 41,008 41,909 102% 44,014 44,751 102% 43,872 44,362 101%

Select 38,406 39,445 103% 37,902 38,997 103% 37,752 38,683 102%

Delete 41,721 41,888 100% 40,849 41,247 101% 40,999 41,130 100%

Total 158,992 161,771 102% 159,374 162,891 102% 158,925 162,162 102%

(Unit: TPS)

CUBRID 9.2 QA Completion Report

18

2.2.2 YCSB Performance Test

As a framework for benchmarking system, YCSB is popular and widely used in the world nowadays (see

also https://github.com/brianfrankcooper/YCSB/wiki). This test has been performed to verify CUBRID

performance of not only basic operations but also compositive operations, which are insert, select, scan,

update and the mix of them. For more information about the test scenarios, see appendix II. As shown in

the results below, the performance on SELECT has significant improvement comparing with 9.1, and all

other operations are same as 9.1.

A. Master Server Configuration: Performance Comparison between 9.2 (64-bit) and 9.1
(64-bit)

Table 12. Result of YCSB Benchmark (Master Server)

 Throughput(OPS)
Average

Latency(ms)

95thPercentile
Latency(ms)

Operations 9.1 9.2 Ratio 9.1 9.2 9.1 9.2

Insert 13,945 13,577 97% 20 21 37 34

Select 26,398 32,593 123% 10 9 29 33

Scan 4,235 4,297 101% 63 63 248 247

Update 12,399 12,262 99% 23 24 18 18

Mix 12,929 12,585 97% N/A N/A N/A N/A

Figure 8. Result of Insert Operation of YCSB Benchmark (Master Server)

CUBRID 9.2 QA Completion Report

19

Figure 9. Result of Select Operation of YCSB Benchmark (Master Server)

Figure 10. Result of Scan Operation of YCSB Benchmark (Master Server)

Figure 11. Result of Update Operation of YCSB Benchmark (Master Server)

CUBRID 9.2 QA Completion Report

20

Figure 12. Result of Mixed of YCSB Benchmark (Master Server)

CUBRID 9.2 QA Completion Report

21

B. Slave Server Configuration: Performance Comparison between 9.1 (64-bit) and 9.2
(64-bit)

Table 13. Result of YCSB Benchmark (Slave Server)

 Throughput(OPS)
Average

Latency(ms)

95thPercentile
Latency(ms)

Operations 9.1 9.2 Ratio 9.1 9.2 9.1 9.2

Insert 14,496 14,018 97% 19 21 38 42

Select 28,224 32,783 116% 9 9 31 34

Scan 4,307 4,244 99% 64 63 248 247

Update 12,971 12,829 99% 22 23 15 16

Mix 13,334 12,732 95% N/A N/A N/A N/A

Figure 13. Result of Insert Operation of YCSB Benchmark (Slave Server)

Figure 14. Result of Select Operation of YCSB Benchmark (Slave Server)

CUBRID 9.2 QA Completion Report

22

Figure 15. Result of Scan Operation of YCSB Benchmark (Slave Server)

Figure 16. Result of Update Operation of YCSB Benchmark (Slave Server)

Figure 17. Result of Mixed of YCSB Benchmark (Slave Server)

CUBRID 9.2 QA Completion Report

23

2.2.3 SysBench Performance Test

SysBench is a modular, cross-platform and multi-threaded benchmark tool for evaluating OS parameters

that are important for a system running a database under intensive load (see also

http://sysbench.sourceforge.net/). SysBench runs a specified number of threads which could execute

requests in parallel. The actual workload produced by requests depends on the specified test mode. You

can limit either the total number of requests or the total time for the benchmark, or both. Available test

modes are implemented by compiled-in modules, and SysBench was designed to make adding new test

modes an easy task. Each test mode may have additional (or workload-specific) options. For more

information about the test scenarios, see appendix II.

As shown in the results below, the performance of SysBench on 9.2 has no changes comparing with 9.1,

a little drop should belong to is the normal fluctuation.

A. SysBench performance comparison between 9.1 (64-bit) and 9.2 (64-bit)

Figure 18. The number of read/write requests per second of SysBench benchmark

Figure 19. The average execution time per request of SysBench benchmark

http://sysbench.sourceforge.net/

CUBRID 9.2 QA Completion Report

24

Figure 20. The accumulated number of transactions of SysBench benchmark

Figure 21. The number of transactions per second of SysBench benchmark

2.2.4 NBD Benchmark Performance Test

This test has been performed to verify the CUBRID performance with the NBD Benchmark tool, which has

been developed to verify the performance of the general bulletin board application framework. The

scalability of the test DB was Level 1. The number of Page Views of 9.2 has no significant changes

comparing with of 9.1.

A. NBD performance comparison between 9.1 (64-bit) and 9.2 (64-bit)

CUBRID 9.2 QA Completion Report

25

Figure 22. NBD performance comparison (64-bit)

CUBRID 9.2 QA Completion Report

26

B. NBD performance comparison between 9.1 (32-bit) and 9.2 (32-bit)

Figure 23. NBD performance comparison (32-bit)

The following graphs represent the usage rate of each resource while processing the NBD benchmark

test on Linux 64-bit.

Figure 24. CPU Usage for NBD Benchmark

CUBRID 9.2 QA Completion Report

27

Figure 25. Memory Usage for NBD Benchmark

Figure 26. Disks IO status for NBD Benchmark

CUBRID 9.2 QA Completion Report

28

2.2.5 TPC-C Performance Test

TPC Benchmark C, approved in July of 1992, is an on-line transaction processing (OLTP) benchmark.

TPC-C (see also http://www.tpc.org/tpcc/) is more complex than the previous OLTP benchmarks such as

TPC-A because of its multiple transaction types, complicated database and overall execution structure.

TPC-C involves a mix of five concurrent transactions of different types and complexity either executed

on-line or queued for deferred execution. The database is comprised of nine types of tables with a wide

range of record and population sizes. TPC-C is measured in transactions per minute (tpmC).

As shown in the results below, the performance of TPC-C on 9.2 has slightly improved on tpmC.

A. TPC-C performance comparison between 9.1 (64-bit) and 9.2 (64-bit)

Figure 27. tpmC comparison of TPC-C benchmark

2.2.6 Data Replication Test on HA

This test has been performed to evaluate the performance of data replication under HA environment by

using YCSB to execute INSERT, MIX operations on Master server with the related configurations, and

check the delay time of data replication on Slave by CUBRID SQL statement. For more details, please

refer to appendix II. As shown in the table below, the performance of data synchronization on 9.2 is

basic same with 9.1, but 9.2 has been significantly improved comparing with R4.1.

Table 14. Data replication performance comparison

 Version Delay Time (sec.)

R4.1 4,397

9.1 267

9.2 256

http://www.tpc.org/tpcc/

CUBRID 9.2 QA Completion Report

29

2.3 Stability Test Results

DOTS, a sub-project of an open source project "Linux Test Project," is an open source test tool for the

DBMS testing. For more information about DOTS, see appendix III. As shown in the test results below,

the system operated stably without any abnormalities during 54 hours. You can ignore the failures

because they are unique violations due to the modification of duplicated data.

Figure 28. The number of SUCCESS/FAIL Queries of DOTS Test

Figure 29. CPU Usage of DOTS Test

CUBRID 9.2 QA Completion Report

30

Figure 30. Memory Usage of DOTS Test

2.4 Compatibility Test Results

This test has been performed to verify the JDBC and CCI compatibility among R4.1, R4.3, R4.4, 9.1 and

9.2. SQL, MEDIUM and Site Tests were executed to verify JDBC compatibility. Shell test cases for CCI

were executed to verify CCI compatibility, all the test results have been passed.

Table 15. Result of JDBC Compatibility Tests when 9.2 as Driver

Test Component Scenario
8.4.1

Server

8.4.3

Server

8.4.4

Server

9.1.0

Server

9.2.0 Driver

SQL 8,704 8,740 8,763 12,100

Medium 970 970 970 970

Site 1,213 1,213 1,213 1,213

Shell_cci 176 190 222 251

Table 16. Result of JDBC Compatibility Tests when 9.2 as Server

Test Component Scenario
8.4.1

Driver

8.4.3

Driver

8.4.4

Driver

9.1.0

Driver

9.2.0 Server

SQL 12,193 12,191 12,188 12,343

Medium 970 970 970 970

Site 1,213 1,213 1,213 1,213

Shell_cci 193 200 169 258

CUBRID 9.2 QA Completion Report

31

2.5 Installation Test Results

Installation test has been performed based on the below basic scenarios:

 Install and uninstall package

 Start and stop service/server/broker and manager

 Create and delete database

 Execute a simple query in csql

CUBRID 9.2 QA Completion Report

32

Table 17. Result of Installation Test

Package Type Test OS Result

RPM/SH/TAR.GZ Linux CentOS on 32-bit and 64-bit PASS

SH Ubuntu 11 on 64-bit

SULinux on 64-bit

Fedora 15 64-bit

PASS

EXE/ZIP Windows Server 2008/2003 on 32-bit and 64-bit PASS

EXE/ZIP Windows 7 on 32-bit and 64-bit

Windows XP on 32-bit

PASS

2.6 Other Test Results

The entire bug and issue fixes for 9.2 have been confirmed.

CUBRID 9.2 QA Completion Report

33

2.7 Quality Index

The standard quality index of 9.2 is listed below.

Table 18. Quality Index of 9.2

Quality Index
Name

Project

Quality
Standard

Approved

Quality
Index

during
Implementat
ion

Measurement Target

Coding Standards

Compliance Rate
100% 100%

Number of coding conventions observed in
a project

56

Number of coding conventions applied to
each team

56

Code Review

Execution Rate
100% 100%

Number of source code lines for which
code review is performed.

1,372,432 LOC

Total number of source code lines in the
changed files

1,372,432 LOC

QA Scenario

Code Coverage
76% 75.1%

Number of tested statements 220,851

Total number of statements 294,235

Fault Density
Detected by

Static Analysis

4

/KLOC
4.73

/KLOC

Number of faults detected by static
analysis (Level 1)

329

Number of faults detected by static
analysis (Level 2) 75

Number of faults detected by static
analysis (Level 3)

850

Number of faults detected by static
analysis (Level 4)

0

Total number of source code lines 978,969 LOC

Cyclomatic Code
Complexity

3.3% 3.0%

Number of modules whose complexity is
over 30

694

Total number of modules in a project 23,631

12% 15.5% Number of modules whose complexity is
over 10

3,679

Total number of modules in a project 23,631

CUBRID 9.2 QA Completion Report

34

3.Conclusions

CUBRID 9.2 QA Completion Report

35

As described in Chapter 1 and 2, all the test cases for functions have been regressed, and the scenarios for

performance, stability, compatibility, installation and other tests have also been successfully executed
before the release of 9.2. The tests have been performed on Linux 32-bit, Linux 64-bit, Windows 32-bit

and Windows 64-bit environments. The related defects have been logged into BTS.

Based on the results obtained from the basic performance test, we can see that the performances of

INSERT, SELECT,UPDATE and DELETE on Linux 64-bit are same as 9.1.

For YCSB, we can see that the performance of SELECT has significant improvement comparing with 9.1,
approximately 20% increase. But other operations such as INSERT, UPDATE and DELETE on Linux 64-bit
are same as 9.1.

For NBD and SysBench, there are no significant changes for performance.

For TPC-C, there are no significant changes for performance of tpmC.

For stability test with DOTS, according to the graphs of CPU usage, Memory usage and the number of

SUCCESS/FAIL queries of Dots , it looks quite stable even after 54 hours of execution, no notable issues
have been found.

According to the result of data replication test on HA mode, the performance of data synchronization has

significantly improved from R4.1, and it is same as 9.1 release.

From the result of compatibility test, we can reach the conclusion that JDBC and CCI on R4.1, R4.3, R4.4

and 9.1 have compatibility with 9.2 server, and JDBC and CCI on 9.2 also have compatibility with R4.1,
R4.3, R4.4 and 9.1 server.

As a conclusion, CUBRID 9.2 meets the criteria of release.

CUBRID 9.2 QA Completion Report

36

Appendix

CUBRID 9.2 QA Completion Report

37

I. Functionality Test Scenarios

This test has been performed to verify the basic DBMS functionalities by using SQL statements. SQL statements stored in the

files have been executed to verify DBMS conformity. We have executed all the stored SQL statements in JDBC-based and

CCI-based applications, and compared the results to the stored reference files for verification. The scenario files included in

the basic functionality test are stored in the SQL and MEDIUM directories of the CUBRID QA tool.

 SQL Query Test

Total: 12,374

Case Name Path Description

object sql/_01_object
Performs functionality tests of objects supported by
CUBRID, and has the largest number of scenarios
(3,332 scenarios).

user_authorization sql/_02_user_authorization
Performs functionality tests of user and
authorization management.

object_oriented sql/_03_object_oriented
Performs tests for the object-oriented concept.
CUBRID is an object-relational database
management system (DBMS).

operator_function sql/_04_operator_function
Performs functionality tests of basic functions and
operators supported by CUBRID.

manipulation sql/_06_manipulation

Performs tests of the insert, update, delete, and
select statements, which are the most commonly
used SQL statements in DML. Basic statements,
subqueries and various join queries are tested.

misc sql/_07_misc
Performs functionality tests of DCL (Data Control
Language), including statistics update or other
functionalities.

javasp sql/_08_javasp
Performs functionality tests of Java stored
procedures.

64-bit sql/_09_64bit
Performs basic functionality test scenarios of the
bigint and datetime types

Connect_by sql/_10_connect_by Performs a test of the hierarchical query feature

Code coverage sql/_11_codecoverage
Performs a test of uncovered codes based on the
code coverage results.

Syntax Extension sql/_12_mysql_compatibility Performs a test of the syntax extension.

BTS issues sql/_13_issues
Performs a test of known issues, which comes
from issue management system.

MySQL compatibility sql/ _14_mysql_compatibility_2 Performs a unit test of the syntax extension 2.

FBO sql/ _15_fbo Performs a test of the FBO feature.

Index enhancement sql/ _16_index_enhancement Performs a unit test of the index enhancement.

SQL Extension sql/ _17_sql_extension2

Performs a test of the syntax extension 2. Include
s a test of syntax enhancements, system parame
ters, show statements, date/time functions, string
 functions, aggregate functions, other functions.

CUBRID 9.2 QA Completion Report

38

Index enhancement sql/ _18_index_enhancement_qa

Performs a test of the index enhancement. Includ
es a test of limit optimizing, using index clause
enhancement, descending index scan, covering in
dex, ordering index, optimizing group by clause,
Index scan with like predicate, next key locking,
etc.

SQL Extension 3
Index Enhancement
Internationalization
(CUBRID 9.0 Beta u

nit test)

sql/_19_apricot

Performs an unit test of syntax extension 3, perf
ormance and internationalization features. Include
s multi-table UPDATE/DELETE, pseudo column, a
nalytic functions, MERGE statements, ENUM type,
filtered index, function based index, index skip s
can, partition and collation.

MySQL compatibility
for NEWS service

sql/_22_news_service_mysql_compatibility
Performs a test of several functions, regular
expression and hint rewriting.

SQL Extension 3

Index Enhancement
Internationalization
(CUBRID 9.0 Beta
QA scenario)

sql/_23_apricot_qa

Performs a test of syntax extension 3, performan
ce and internationalizztion features, Test of synta
x exetension 3 includes multi-table UPDATE/DELE
TE, pseudo column, analytic functions, MERGE st
atements, ENUM type, and other functions, Test
of performance includes filtered index, function b
ased index, index skip scan and partition enhanc
ement. Test of internationalization includes tests
of 11 languages.

SQL Extension 3

Internationalization

(CUBRID 9.1 QA sc
enario)

sql/_24_aprium_qa

Performs a test of syntax extension,
internationalization features.

Test for syntax extension includes TRUNC, WIDT
H_BUCKEY, ROUND, NTILE functions, LEAD analy
tic function, and direct access to partitions in IN
SERT/UPDATE statements.

Test for internationalization includes collation per
 table, SHOW COLLATION, COLLATE modifier ap
plied to expressions, etc.

844 feature enhanc
ement

sql/_25_features_844
Performs a test of alter table to add columns w
hen table already contains data

SQL Extension

Internationalization

(CUBRID 9.2 QA sc
enario)

sql/_26_features_920

Performs a test of sql extension, internationalizati
on features.

Test for sql extension includes NULLS order synt

ax, and some functions: FIRST_VALUE, LAST_VA
LUE, NTH_VALUE, CUME_DIST, PERCENT_RANK,M
EDIAN.

Test for internationalization includes new collation
s added, hash partition on columns with any coll
ation, etc.

 MEDIUM Query Test

Total: 970

Case Name Path Description

01_fixed medium/_01_fixed Performs regression test scenarios for bug fixes that have been
implemented since the initial version.

02_xtests medium /_02_xtests Performs test scenarios for functionalities supported by CUBRID,

CUBRID 9.2 QA Completion Report

39

but not by other DBMSs.

03_full_mdb medium /_03_full_mdb Performs test scenarios for sequential/index scan queries with an
index.

04_full medium /_04_full Performs test scenarios that include testing queries for limit values
of CUBRID.

05_err_x medium /_05_err_x Performs negative test scenarios for functionalities that are
supported by CUBRID, but not by other DBMSs.

06_fulltests medium /_06_fulltests Performs test scenarios for search queries with OIDs.

07_mc_dep medium /_07_mc_dep Includes a query that gives various conditions to a WHERE clause in
the SELECT query, and tests whether or not a correct result has
been selected.

08_mc_ind medium/_08_mc_ind Includes scenarios that test queries performing schema change.

 SITE Query Test

Total: 1,213

Case Name Path Description

k_count_q site/k_count_q Retrieves count (*) results of a query that is included in the kcc_q query.

k_merge_q site/k_merge_q Forces to give a hint to the kcc_q queries allowing merge joins.

k_q site/k_q

Performs tests for OID reference, collection type, and path expression
that are part of the object-oriented concept supported by CUBRID with
different scalabilities. In addition, it performs functionality tests while
increasing the number of join participating tables.

n_q site/n_q
Performs tests for a complex query in which subqueries, outer/inner
joins or group-by queries are combined, and checks whether correct
results are retrieved.

 Utility (Shell) Test

This test was performed to verify the basic DBMS functionalities using shell scripts. In particular, this test was also

performed to verify CUBRID utilities that cannot be tested by SQL statements. Scenarios of shell scripts are executed to

verify DBMS conformity.

Total: 1,754

Case Name Path Description

utility shell/_01_utility
Includes a script that tests the database management
commands supported by CUBRID.

sqlx_init shell/_02_sqlx_init
Includes scenarios that change the configuration of CUBRID
DBMS parameters, and checks whether they are working
correctly.

itrack shell/_03_itrack
Includes scenarios that verify there is no regression by
checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.

miscellaneous shell/_04_misc
Includes miscellaneous items, such as jdbc cache, query
 cache and async commit test

addition shell/_05_addition Includes scenarios added to improve code coverage and

CUBRID 9.2 QA Completion Report

40

mainly tests the options of CUBRID utilities.

BTS issues shell/_06_issues
Includes scenarios that verify there is no regression by
checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.

Index enhancement shell/_07_index_enhancement

Includes scenarios that verify next key lock and change the
configuration of CUBRID DBMS related to index
enhancement, which has been added in CUBRID 2008 R4.0
Beta.

64bit scenario shell/_09_64bit Includes file size on linux 64 bit

improve coverage sc
eneario

shell/_11_codecoverage
Includes shell cases to improve coverage, all the cases a
re related to the system parameter test

xa datasource shell/_21_xa Includes scenarios to cover xa DataSource features

MySQL service
compatibility

shell/_22_news_service_mysql_c
ompatibility

Includes scenarios to test CUBRID compatibility with MyS
QL service

MySQL compatibility shell/_23_mysql_compatibility
Includes scenarios that verify syntax extension, which has
been added in CUBRID 2008 R3.1.

CUBRID 9.0 Beta
QA

shell/_24_apricot
Includes scenarios that verify CUBRID 9.0 Beta functions
such as i18n, enum, etc.

Unstable shell/_25_ unstable Includes scenarios that are not very stable

CUBRID 9.0 Beta QA shell/_26_apricot_qa
Includes scenarios that added by QA to verify CUBRID
9.0 Beta functions such as i18n, cursor holdability, etc.

CUBRID 9.1 QA shell/_27_aprium_qa
Includes scenarios that added by QA to verify prefix key,
enum, collationof CUBRID 9.1 i18n function.

New feature and fea
ture enhancement

shell/_28_ features_844
Includes error message enhancement, server statistic up
date and query profiling features

SQL Extension

Internationalization

(CUBRID 9.2 QA shel
ls script scenario)

shell/_29_features_920

Performs a test for sql extension, internationalization feat
ures.Test for sql extension includes NULLS order syntax,
and some functions: FIRST_VALUE, LAST_VALUE, NTH_V
ALUE, CUME_DIST, PERCENT_RANK,MEDIAN.Test of inter
nationalization includes new collations added, hash partiti
on on columns with any collation, etc.

Manual shell Manually/*
All the manual test cases which can’t be automated or
need long time to regress

 HA Feature Test

Total: 179

Case Name Path Description

Fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a node/process/broker fault occurs during insert/
update/delete operations.

Bug regression HA/shell/ Includes scenarios that verify there is no regression by checking the HA
bug fixes in CUBRID

 HA Replication test

CUBRID 9.2 QA Completion Report

41

Total: 12,423

Case Name Path Description

Test Cases migrated fr
om SQL suite

N/A
Migrated existing SQL suite into HA environment. Execute them on m
aster node, then check whether be replicated to slave or not.

Bug Regression HA/shell/_24_fun
ctional_repl/

Includes scenarios that verify there is no regression by checking the HA
bug fixes in CUBRID

 CCI Interface test

Total: 254

Case Name Path Description

Features test Interface/shell/_2
0_cci

Which contains CCI all APIs, each APIs are mentioned in manual are
tested in shell scripts

Bug Regression Interface/shell/_2
0_cci/_12_issue

Includes shell scripts which are written when verify CCI bts issues

 JDBC Interface test

Total: 1,530

Case Name Path Description

Features test
N/A

Which include unit test for jdbc, jdbc spec 3.0 test, and other open
source databases jdbc case migration

 CAS4MySQL/Oracle test

Total: 108

Case Name Path Description

CAS4MySQL N/A Cas4MySQL test and CAS4MySQL BTS issues automation scripts

CAS4Oracle N/A Cas4Oracle test and Cas4Oracle BTS issues automation scripts

CUBRID 9.2 QA Completion Report

42

II. Performance Test Scenarios

 CUBRID Basic Performance Test

To evaluate the basic performance of DBMS, the following 5 variables were used. Database Server,

Broker, and Load Generator were run on a single server.

 Number of data (or number of program loops)

 Total number of data: 900,000 items

 Number of program loops: 100,000 loops/program (900,000 items)

 COMMIT Interval

- After every execution

- After 100 executions

- After 1,000 executions

 Number of concurrent users

- 5 users

- 10 users

 Number of index attributes

- create index idx1 on xoo(a)

- create index idx2 on xoo(a,b)

- create index idx3 on xoo(a,b,e)

 Interface

- JDBC (Dynamic SQL): Prepared statements were used.

 Test data

 Test schema

CREATE TABLE xoo (
 a int,
 b int,
 c int,
 d int,
 e char(10),
 f char(20),
 g char(30)
)

CREATE INDEX idx1 on xoo(a);
CREATE INDEX idx2 on xoo(a,b);
CREATE INDEX idx3 on xoo(a,b,e);

CUBRID 9.2 QA Completion Report

43

 Test data

Enter data from 1 to 450,000; total number of data is 900,000.

 How to perform a test

 Insert/update/select/delete data from a specific number.

 For concurrent user tests, the start and end numbers are defined to prevent data from overlapping,

in order to ensure that there is no competition between the concurrent clients.

 For concurrent user test programs, a JDBC test program is tested with a multi-threaded program,

and a C program is tested with a multi-process program.

 If the number of loops is 10,000, a user repeats execution 10,000 times in the case of the 1-user

test, and each user repeats execution 2,000 times in the case of the 5-user test. Similarly, if the

number of loops is 100,000, a user repeats execution 100,000 times in the case of the 1-user test,

and each user repeats execution 20,000 times in the case of the 5-user test.

 How to measure test results

 Measure the number of loops per second.

 For concurrent user tests, add the execution times of all users.

 YCSB Benchmark

This test was performed to verify CUBRID performance of not only basic operations but also compositive

operations, which are insert, select, scan, update and mix of them.

 Common Test Environment

 Test Servers

 CUBRID database volume configuration

cubrid createdb ycsb

cubrid addvoldb -p data --db-volume-size=2G ycsb -S
cubrid addvoldb -p data --db-volume-size=2G ycsb -S

CUBRID Server

IP: 10.34.64.51
CentOS 5.6(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2 . 4 0 GHz *1 (12
core)
Memory: 32G

YCSB

IP: 10.34.64.52
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.4GHz *1 (12
core)
Memory: 32G
java version "1.6.0_25"

CUBRID Broker

IP: 10.34.64.50
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz *1 (12
core)
Memory: 32G

CUBRID 9.2 QA Completion Report

44

cubrid addvoldb -p index --db-volume-size=2G ycsb -S

cubrid addvoldb -p index --db-volume-size=2G ycsb -S
cubrid addvoldb -p temp --db-volume-size=2G ycsb –S

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON
BROKER_PORT =33000

MIN_NUM_APPL_SERVER =320
MAX_NUM_APPL_SERVER =320

APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log
ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =OFF
TIME_TO_KILL =120

SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO
CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=4G
sort_buffer_size=2M

cubrid_port_id=1523
max_clients=500

db_volume_size=512M

log_volume_size=512M

 Workload configuration on YCSB

 Insert operation (load)

recordcount=10000000

operationcount=10000000
workload=com.yahoo.ycsb.workloads.CoreWorkload

readallfields=true

readproportion=0
updateproportion=0

scanproportion=0
insertproportion=1

requestdistribution=zipfian
threads=300

fieldlength=10

 Select operation

recordcount=10000000
operationcount=10000000

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=1

CUBRID 9.2 QA Completion Report

45

updateproportion=0

scanproportion=0
insertproportion=0

requestdistribution=zipfian
threads=300

fieldlength=10
table=usertable

 Scan operation

recordcount=10000000

operationcount=10000000
workload=com.yahoo.ycsb.workloads.CoreWorkload

readallfields=true
readproportion=0

updateproportion=0

scanproportion=1
insertproportion=0

requestdistribution=zipfian
fieldlength=10

table=usertable
maxscanlength=200

threads=300

 Update operation

recordcount=10000000
operationcount=10000000

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=0

updateproportion=1
scanproportion=0

insertproportion=0
requestdistribution=zipfian

fieldlength=10
table=usertable

threads=300

 Mix operation

recordcount=10000000
operationcount=10000000

workload=com.yahoo.ycsb.workloads.CoreWorkload
readallfields=true

readproportion=0.3

updateproportion=0.3
scanproportion=0.1

insertproportion=0.3
requestdistribution=zipfian

fieldlength=10

table=usertable
maxscanlength=200

CUBRID 9.2 QA Completion Report

46

threads=300

 Test schema

Create table usertable (
userkey CHARACTER VARYING(100) PRIMARY KEY,
field1 CHARACTER VARYING(100),
field2 CHARACTER VARYING(100),
field3 CHARACTER VARYING(100),
field4 CHARACTER VARYING(100),
field5 CHARACTER VARYING(100),
field6 CHARACTER VARYING(100),
field7 CHARACTER VARYING(100),
field8 CHARACTER VARYING(100),
field9 CHARACTER VARYING(100),
field10 CHARACTER VARYING(100)
)

 Test data on master server configuration

 CUBRID server configuration

 async_commit=no

 group_commit_interval_in_msecs=0

 Test data on slave server configuration

 CUBRID server configuration

 async_commit=yes

 group_commit_interval_in_msecs=1000

 Statements to be tested

 Insert operation

INSERT INTOusertable(userkey, field1, field2, field3, field4, field5, field6, field7, field8, field9, field10)
VALUES (?, ?, ?, ?, ?, ?,?, ?, ?, ?, ?);

 Select operation

SELECT * FROM usertable WHERE userkey= ?;

 Scan operation

SELECT * FROM usertable WHERE userkey>= ?LIMIT ?;

 Update operation

UPDATE usertable set field1=?, field2=?, field3=?, field4=?, field5=?, field6=?, field7=?, field8=?, field9=?, field10=? WHERE

CUBRID 9.2 QA Completion Report

47

userkey = ?;

 Mix operation

 Select operation: 30%

 Update operation: 30%

 Scan operation: 10%

 Insert operation: 30%

 SysBench Benchmark

This test was performed to verify CUBRID performance based on OLTP business.

 Test Environment

 Test Servers

 CUBRID database volume configuration

cubrid createdb sysbench

cubrid addvoldb -p data --db-volume-size=2G sysbench -S
cubrid addvoldb -p data --db-volume-size=2G sysbench -S

cubrid addvoldb -p index --db-volume-size=2G sysbench -S
cubrid addvoldb -p temp --db-volume-size=2G sysbench -S

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON

BROKER_PORT =33000
MIN_NUM_APPL_SERVER =320

MAX_NUM_APPL_SERVER =320
APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log
SQL_LOG =OFF

TIME_TO_KILL =120
SESSION_TIMEOUT =300

KEEP_CONNECTION =AUTO

CUBRID Server

IP: 10.34.64.51
CentOS 5.6(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz *1 (12 core)
Memory: 32G

SysBench

IP: 10.34.64.52
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.4GHz *1 (12
core)
Memory: 32G
java version "1.6.0_18"

CUBRID Broker

IP: 10.34.64.50
CentOS 5.6 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5645@ 2.40GHz *1 (12
core)
Memory: 32G

CUBRID 9.2 QA Completion Report

48

CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=4G
log_buffer_size=4M

sort_buffer_size=2M
max_clients=500

cubrid_port_id=1523
db_volume_size=512M

log_volume_size=512M

async_commit=no
group_commit_interval_in_msecs=0

 Test schema

create table sbtest(

id INTEGER AUTO_INCREMENT PRIMARY KEY,
k INTEGER DEFAULT 0 NOT NULL,
c CHAR(120) NOT NULL DEFAULT '',
pad CHAR(60) NOT NULL DEFAULT '',
INDEX i_sbtest_k ON sbtest (k)

)

 Configuration to start SysBench

./sysbench --test=oltp \
 --db-driver=cubrid \
 --cubrid-host=10.34.64.50 \
 --cubrid-port=33000 \
 --cubrid-db=sysbench \
 --num-threads=300 \
 --max-requests=0 \
 --max-time=14400 \
 --oltp-skip-trx=off \
 --oltp-read-only=off \
 --oltp-table-size=1000000 \
run

 NBD Benchmark

This test was performed to verify CUBRID performance using the NBD Benchmark tool, which has been

developed to verify the performance of the general bulletin board application framework. For more

information about NBD Benchmark, see separate documents.

 TPC-C Benchmark

BenchmarkSQL is a implementation of TPC-C standard. We can get more information in website

http://sourceforge.net/projects/benchmarksql/. For this performance test, we just use this

BenchmarkSQL tool to execute on CUBRID. In order to support CUBRID very well, we made

some modification. See below for location:

SVN URL: http://svn.bds.nhncorp.com/xdbms/qatools/trunk/benchmarksql

http://sourceforge.net/projects/benchmarksql/
http://svn.bds.nhncorp.com/xdbms/qatools/trunk/benchmarksql

CUBRID 9.2 QA Completion Report

49

 Test Environment

 Test Servers

 CUBRID database volume configuration

cubrid createdb tpcdb10
cubrid addvoldb -p data --db-volume-size=2G tpcdb10 -S

cubrid addvoldb -p data --db-volume-size=2G tpcdb10- S
cubrid addvoldb -p index --db-volume-size=2G tpcdb10 -S

cubrid addvoldb -p temp --db-volume-size=2G tpcdb10 -S

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON
BROKER_PORT =33000

MIN_NUM_APPL_SERVER =120
MAX_NUM_APPL_SERVER =120

APPL_SERVER_SHM_ID =33000

LOG_DIR =log/broker/sql_log
ERROR_LOG_DIR =log/broker/error_log

SQL_LOG =OFF
TIME_TO_KILL =120

SESSION_TIMEOUT =300
KEEP_CONNECTION =AUTO

CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=4G
max_clients=300

 BenchmarkSQL configuration

Number of warehouses: 10
Number of Terminals: 100

Execute minutes: 30

Payment : 43%, Order-Status: 4%, Delivery: 4% , Stock-Level: 4% ,New-Order:45%

 Data Replication Test on HA

This test was performed to evaluate the performance of data replication on HA environment, by using YCSB to

execute Insert, Mix operations on Master server with the related configurations, and check the delay time of

data replication on Slave by CUBRID SQL statement.

BenchmarkSQL

IP: 10.99.116.61
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27 GHz *1 (12
core)
Memory: 48G
java version "1.6.0_18"

CUBRID Broker/Server

IP: 10.99.116.62,63
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2. 2 7 GHz *1 (12
core)
Memory: 48G

CUBRID 9.2 QA Completion Report

50

 Test Servers

 Table scheme

csql> ;sc usertable
=== <Help: Schema of a Class> ===

 <Class Name>

 usertable
 <Attributes>

 userkey CHARACTER VARYING(100) NOT NULL
 field1 CHARACTER VARYING(100)

 field2 CHARACTER VARYING(100)

 field3 CHARACTER VARYING(100)
 field4 CHARACTER VARYING(100)

 field5 CHARACTER VARYING(100)
 field6 CHARACTER VARYING(100)

 field7 CHARACTER VARYING(100)
 field8 CHARACTER VARYING(100)

 field9 CHARACTER VARYING(100)

 field10 CHARACTER VARYING(100)
 <Constraints>

 PRIMARY KEY pk_usertable_userkey ON usertable (userkey)

 Configuration for CUBRID

 cubrid_broker.conf:

SERVICE =ON

BROKER_PORT =33000

MIN_NUM_APPL_SERVER =320
MAX_NUM_APPL_SERVER =320

APPL_SERVER_SHM_ID =33000
LOG_DIR =log/broker/sql_log

ERROR_LOG_DIR =log/broker/error_log
SQL_LOG =OFF

TIME_TO_KILL =120

SESSION_TIMEOUT =300
KEEP_CONNECTION =AUTO

CCI_DEFAULT_AUTOCOMMIT =ON

 cubrid.conf:

data_buffer_size=5G

max_clients=200

ha_mode=on

Master Server

IP: 10.99.116.62
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27GHz *1 (12
core)
Memory: 48G
java version "1.6.0_18"

Slave Server

IP: 10.99.116.63
CentOS 6.3 (64bit)
Hard Disk: 800G
Intel(R) Xeon(R) CPU
L5640@ 2.27GHz *1 (12
core)
Memory: 48G

CUBRID 9.2 QA Completion Report

51

 cubrid_ha.conf

ha_copy_sync_mode=sync:sync

 YCSB configurations

 cubrid_load

recordcount=20000000
operationcount=10000000

readallfields=true
readproportion=0

updateproportion=0
scanproportion=0

insertproportion=1

requestdistribution=zipfian
threads=100

fieldlength=10

 cubrid_mix

recordcount=20000000

operationcount=10000000

readallfields=true
insertproportion=0.6

updateproportion=0.3
deleteproportion=0.1

requestdistribution=zipfian
fieldlength=10

table=usertable

maxscanlength=200

CUBRID 9.2 QA Completion Report

52

III. Stability Test Scenarios

DOTS, a sub-project of an open project called "Linux Test Project", is an open test tool for testing the DBMS.

 Test Related Schema (the Number of Data in Each Table)

CREATE TABLE REGISTRY (
 USERID CHAR(15) NOT NULL PRIMARY KEY,
 PASSWD CHAR(10),
 ADDRESS CHAR(200),
 EMAIL CHAR(40),
 PHONE CHAR(15)
);

CREATE TABLE ITEM (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 SELLERID CHAR(15) NOT NULL,
 DESCRIPTION VARCHAR(250) ,
 BID_PRICE FLOAT,
 START_TIME DATE,
 END_TIME DATE,
 BID_COUNT INTEGER
);

CREATE TABLE BID (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 BIDERID CHAR(15) NOT NULL,
 BID_PRICE FLOAT,
 BID_TIME DATE
);

 CUBRID configuration

 cubrid_broker.conf

MIN_NUM_APPL_SERVER=20
MAX_NUM_APPL_SERVER=100
APPL_SERVER_MAX_SIZE=100
SQL_LOG=OFF

 cubrid.conf

log_max_archives=150
async_commit=yes
group_commit_interval_in_msecs=10
checkpoint_every_npages=100000
checkpoint_interval_in_mins=10
max_clients=200
data_buffer_size=1G

 DOTs configuration

DURATION=24:00
CONCURRENT_CONNECTIONS= 20
AUTO_MODE = no
SUMMARY_INTERVAL = 5
MAX_ROWS= 900000000

 Data Size and How to Create Data

The initial number of data when starting the test is 0. Enter 1000 of data in the REGISTRY table. Next,

enter 100 of data in the ITEM table as well as in the bid table. Then, update 100 times.

 Transaction types

 INSERT transaction 1

CUBRID 9.2 QA Completion Report

53

INSERT INTO ITEM (ITEMID,SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT)
VALUES (?, ?, ? ,?, ?, ?, ?)

 INSERT transaction 2

INSERT INTO BID (ITEMID,BIDERID,BID_PRICE,BID_TIME)
VALUES (?, ?, ?, ?)

 SELECT transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID = ?

 SELECT transaction 2

SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?
SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?

 UPDATE transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID =
UPDATE ITEM SET DESCRIPTION = ?,BID_PRICE = ?,START_TIME = ?,END_TIME = ? WHERE ITEMID = ?

 How to Generate Load

 How to generate load

Use two threads to generate the initial load. Each thread repeats the insert/select/update queries

mentioned above. The DOTS program checks CPU usage every 5 minutes. If the Peak CPU usage does

not exceed 100%, the test continues, by adding two more threads.

CUBRID 9.2 QA Completion Report

54

IV. Scenario-based Code Coverage Results

V. JDBC Code Coverage Results

